это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2323264
Ознакомительный фрагмент работы:
ВВЕДЕНИЕ
Методы расшифровки нуклеотидной последовательности нуклеиновых кислот в отечественной литературе принято называть методами секвенирования. молекулярный кластер секвенирование нуклеотидный
Стремительно развивающиеся технологии секвенирования создали возможность определения нуклеотидной последовательности ДНК полного индивидуального генома человека всего за несколько недель. Производительность некоторых секвенаторов измеряется уже многими сотнями миллиардов пар оснований за рабочий цикл.
Еще в 50-е годы прошлого века были разработаны методы, позволяющие определять последовательность аминокислот в полипептидной цепи. Теоретически это несложно, поскольку все аминокислоты, встречающиеся в природных белках, имеют разные свойства. Поэтому, когда был расшифрован генетический код, появилась возможность восстанавливать нуклеотидную последовательность транскрибируемой ДНК по аминокислотной последовательности соответствующего белка. Однако, генетический код является вырожденным. Следовательно, первичная структура ДНК, полученная на основе анализа последовательности аминокислот, не является однозначной. Кроме того, для эукариот таким способом можно восстановить лишь нуклеотидный состав экзонов, тогда как информация о составе интронов теряется в результате сплайсинга.
В генной инженерии часто требуется выделить отдельный, пока еще не охарактеризованный фрагмент ДНК, например, с целью определения его полной нуклеотидной последовательности. Для этого используются такие методы секвенирования как Секвенирование по Сэнгеру, метод Маскама и Гилберта, метод пиросеквенирования и методы секвенирования ДНК нового и новейшего поколения.
1 ЧТО ТАКОЕ СЕКВЕНИРОВАНИЕ. Секвенирование (sequencing) – это общее название методов, которые позволяют установить последовательность нуклеотидов в молекуле ДНК. В настоящее время нет ни одного метода секвенирования, который бы работал для молекулы ДНК целиком; все они устроены так: сначала готовится большое число небольших участков ДНК (клонируется молекула ДНК многократно и «разрезается» её в случайных местах), а потом читается каждый участок по отдельности.
Клонирование происходит либо просто выращиванием клеток в чашке Петри, либо (в случаях, когда это было бы слишком медленно или по каким-то причинам не получилось бы) при помощи так называемой полимеразной цепной реакции. В кратком и неточном изложении работает она примерно так: сначала ДНК денатурируют, т. е. разрушают водородные связи, получая отдельные нити. Затем к ДНК присоединяют так называемые праймеры; это короткие участки ДНК, к которым может присоединиться ДНК-полимераза – соединение, которое, собственно, и занимается копированием (репликацией) нити ДНК. На следующем этапе полимераза копирует ДНК, после чего процесс можно повторять: после новой денатурации отдельных нитей будет уже вдвое больше, на третьем цикле – вчетверо, и так далее.
Все эти эффекты достигаются в основном с помощью изменений температуры смеси из ДНК, праймеров и полимеразы; для наших целей важно, что это достаточно точный процесс, и ошибки в нём редки, а на выходе получается большое число копий участков одной и той же ДНК. Разные методы секвенирования отличаются друг от друга не методами клонирования, а тем, как потом прочесть получившийся «суп» из многочисленных копий одной и той же ДНК.
2 МЕТОД СЭНГЕРА (ФЕРМЕНТАТИВНЫЙ)В настоящее время «метод терминации цепи», или «дидезокси метод», разработанный в 70-х гг. прошлого века Фредериком Сэнгером, является самым распространенным на сегодняшний день способом секвенирования ДНК. Дешевизна, точность, а также сравнительная простота автоматизации делает этот метод своеобразным «золотым стандартом» среди всех существующих на сегодняшний день способов определения последовательности ДНК. Данным способом был расшифрован весь геном человека, и именно метод Сенгера до сих пор является рутинным в повседневной лабораторной практике. В своей работе Сенгер - использовал меченые атомы, что позволило ему работать с ничтожно малым количеством экспериментального материала – порядка микрограммов. В 1977 Сенгер и его коллеги продемонстрировали результативность своего метода, установив последовательность оснований в цепи ДНК бактериального вируса, длина которой составила более 5000 пар оснований. Это был первый случай такой подробной расшифровки цепи ДНК. В журнале «Nature» им был опубликован полный список этой последовательности для нуклеотидов ДНК фага ФХ174, т.е. его химическая формула. В результате исследований в области нуклеиновых кислот в 1980 Сенгеру и американцу У.Гилберту была присуждена половина Нобелевской премии «за вклад в определение последовательности оснований в нуклеиновых кислотах». Другая половина премии была присуждена американцу П.Бергу. Таким образом, Сенгер стал единственным дважды Нобелевским лауреатом по химии (1958 и 1980).
Для постановки реакции секвенирования Сенгер с коллегами делали следующие манипуляции. Раствор с праймером распределяли по четырем пробиркам, в каждой из которых находятся четыре дезоксинуклеотида, dATP, dCTP, dGTP и dTTP (один из них — меченный радиоактивным изотопом) и один из четырех дидезоксинуклеотидов (ddATP, ddTTP, ddGTP или ddCTP). Дидезоксинуклеотид включается по всем позициям в смеси растущих цепей, и после его присоединения рост цепи сразу останавливается. В результате этого в каждой из четырех пробирок при участии ДНК-полимеразы образуется уникальный набор олигонуклеотидов разной длины, начинающийся с праймерной последовательности. Далее в пробирки добавляли формамид для расхождения цепей и проводили электрофорез в полиакриламидном геле на четырех дорожках, с последующей радиоавтографией, которая позволяет «прочесть» нуклеотидную последовательность секвенируемого сегмента ДНК.
В 1990-х метод Сенгера претерпел важные усовершенствования. Радиоактивное мечение заменили флуоресцентным. То есть к каждому из нуклеотидов-терминаторов присоединили флуоресцентную метку своего цвета. Это позволило совместить четыре реакции синтеза в одной пробирке, а также автоматизировать считывание электрофореза: продукты реакции детектировали фотодатчики на выходе из геля. Короткий фрагмент ДНК называемый праймером, инициирует синтез ДНК в определённой точке цепи ДНК-матрицы. Фермент - ДНК-полимераза синтезирует цепь ДНК полностью комплементарную последовательности ДНК матрицы. При этом видоизменённые разновидности нуклеотидов, которые присутствуют в реакционной смеси в значительно меньших количествах, чем обычные нуклеотиды, обрывают синтез, когда один из них оказывается на конце растущей ДНК-цепи. (Все дело в том, что видоизмененные нуклеотиды не имеют той самой химической группы, к которой должен присоединяться следующий нуклеотид для продолжения цепи). В результате получается смесь, содержащая полный набор новосинтезированных фрагментов ДНК, каждый из которых начинается в одном и том же месте, но заканчивается во всех возможных положениях вдоль цепи ДНК-матрицы. Современные автоматизированные секвенаторы разделяют эти фрагменты, пропуская всю смесь через тончайшие капилляры, наполненные полимером. Чем короче фрагмент, тем быстрее он движется в геле по капилляру под действием электрического поля. Фрагменты ДНК – по сути, ионы, движущиеся в электрическом поле от «минуса» к «плюсу». Процесс, называемый капиллярным электрофорезом, настолько эффективен, что фрагмент, только что вышедший из капилляра, оказывается ровно на один нуклеотид длиннее, чем предшествующий ему. Во время электрофореза луч лазера в определенном месте геля возбуждает флуоресценцию красителей, и детектор определяет, какой нуклеотид в настоящий момент мигрирует через гель. Таким образом регистрируя последовательность появления нуклеотидов, прибор складывает «буквы» (нуклеотиды) в «текст» (последовательность ДНК).
В настоящее время определение точной нуклеотидной последовательности любого сегмента ДНК умеренной длины - вполне разрешимая задача. Уже определена последовательность нескольких сотен генов про- и эукариот. Зная последовательность гена и генетический код, легко определить аминокислотную последовательность кодируемого им белка. Определение последовательности ДНК привело также к тому, что были обнаружены области, которые не кодируют белки, но принимают участие в регуляции экспрессии генов и репликации ДНК. В 1996 году был секвенирован геном дрожжей, в 1998 г. – геном арабидопсиса, в 2000 году – геном человека.
2.1 Этапы подготовки и секвенирование последовательности ДНКВесь процесс от отбора биологического материала до установления последовательности ДНК, включая стадию подготовки пробы, я разделил на четыре основных блока (этапа). Первый блок это – наработка матрицы интересующей нас последовательности для последующего проведения с ней секвенсовой реакции, второй – это непосредственная постановка и проведение секвенсовой реакции, третий, третий блок включает капиллярный электрофорез и четвертый непосредственный анализ «сырых» данных полученных в ходе проведения секвенирования. Остановлюсь немного поподробней на каждом из этапов. Первый этап наработка матрицы интересующей нас последовательности для последующего проведения с ней секвенсовой реакции является самым продолжительным во временном отношении и включает в себя несколько стадий. Экстракцию ДНК из биологического материала. В настоящее время на рынке есть множество наборов для решения этой задачи. В зависимости от объекта исследований это может быть как ДНК растений, так и ДНК животных. После выделения (получения) образца ДНК интересующего нас объекта, необходимо наработать большое количество матрицы определенного участка (в зависимости от задачи исследования). Для этого при помощи полимеразной цепной реакции амплифицируем («размножаем») интересующий нас участок молекулы ДНК. Далее чистим продукт ПЦР реакции (Разгонка в агарозом геле, вырезание и чистка от геля), после чего используем его в качестве матрицы для проведения секвенсовой реакции. Второй этап проведение секвенсовой реакции и очистка ее продукта. В настоящее время дидезоксинуклеотиды метят четырьмя разными флуоресцентными красителями и проводят ПЦР в одной пробирке, о чем было сказано выше. Третий этап электрофорез продуктов секвенсовой реакции в полиакриламидном геле. Еще раз повторюсь, что современные приборы используют для секвенирования ДНК капиллярный электрофорез. Данный этап полностью автоматизирован, и проходит в секвенаторе. Последним этапом на пути к получению последовательности является этап обработки данных, полученных с прибора.
3 МЕТОД МАКСАМА-ГИЛБЕРТА. За 20 с лишним лет, прошедших с момента разработки метода определения нуклеотидной последовательности ДНК с помощью ограниченной химической модификации азотистых оснований, происходящей под действием различных реагентов и дальнейшего расщепления цепи ДНК по местам таких модифицированных оснований, заметно изменились многие составляющие всего этого процесса. Так, для получения фрагментов ДНК, несущих метку на одном из своих концов и пригодных для их последующего секвенирования, стали использовать несколько иные подходы, включая и ПЦР. Расширился выбор меченых молекул, повысилась разрешающая способность электрофоретического разделения, "упростилась" радиоавтография, усовершенствовался этап "чтения" нуклеотидной последовательности с радиоавтографа геля. Значительный прогресс достигнут в области компьютеризации секвенирования ДНК.
Однако центральный элемент метода секвенирования ДНК по Максаму-Гилберту – химическая деградация меченой цепи ДНК – изменился за эти годы не так сильно. Хотя многими исследователями и предлагались различные варианты модификаций тех или иных азотистых оснований, все же в основном арсенале этого метода находятся 4-6 химических реакций, показывающих наиболее стабильные результаты. К числу важных результатов, полученных с помощью данного метода, следует отнести нуклеотидную последовательность плазмидного вектора pBR322 [Sutcliffe, 1978], впоследствии несколько уточненную.
Несмотря на относительно низкую производительность метода секвенирования ДНК путем химической деградации по Максаму-Гилберту в сравнении с ферментативным методом секвенирования ДНК по Сэнгеру, этот метод в настоящее время все же продолжает использоваться и в отдельных случаях почти незаменим. Так, метод химической деградации применяется для секвенирования синтетических олигонуклеотидов в тех случаях, когда это необходимо. Особо "трудные" участки с сильной вторичной структурой не всегда бывает возможно секвенировать с помощью ферментативного построения новой цепи ДНК и тогда используют данный метод. Кроме этого, с помощью секвенирующего гель-электрофореза возможно выявление ДНК/белковых взаимодействий после того, как исследуемая ДНК в комплексе с белком была подвергнута химической модификации по Максаму-Гилберту. К некоторому преимуществу метода секвенирования ДНК химической деградацией можно отнести то, что здесь определяется последовательность фрагмента ДНК, или геномного, или клонированного, в каком-либо подходящем векторе (т.е. реплицировавшегося in vivo), а не новосинтезированная in vitro копия, как в ферментативном методе с дидезокситерминаторами. Еще одно отличие метода секвенирования ДНК по Максаму-Гилберту от метода Сэнгера заключается в том, что его осуществление может начаться практически с любого сайта узнавания какой-нибудь рестрикционной эндонуклеазы, присутствующего во вставке и поэтому не требуется предварительного знания даже небольшого участка нуклеотидной последовательности, окружающего данное место. В этой связи метод секвенирования ДНК путем химической деградации иногда выступает в качестве стартового при выполнении крупномасштабных проектов по определению нуклеотидных последовательностей протяженных фрагментов ДНК. В то же время нельзя не отметить серьезный недостаток метода секвенирования ДНК по Максаму-Гилберту, заключающийся в высокой токсичности большинства используемых реагентов, обращение с которыми и их дальнейшая утилизация требуют соблюдения определенных правил.
В основе метода секвенирования ДНК путем химической деградации лежит ограниченное расщепление меченого фрагмента ДНК под действием специфических реагентов. Непременным условием проведения секвенирования этим методом является наличие фрагмента ДНК, меченного только по одному концу. Разделение продуктов деградации по размеру с помощью высоковольтного электрофореза в полиакриламидном геле высокого разрешения, способного разделять фрагменты ДНК, различающиеся между собой по длине всего на один нуклеотид в достаточно широком диапазоне, и последующая радиоавтография геля позволяет определить нуклеотидную последовательность секвенированного участка ДНК.
Первым этапом при проведении реакции химической деградации является ограниченная модификация определенных нуклеотидов под действием различных химических агентов. Концентрация агента и продолжительность его воздействия на молекулы ДНК подбирается с таким расчетом, чтобы в каждой молекуле произошла модификация только одного нуклеотида, а поскольку в реакционной смеси присутствует огромное количество таких молекул, то, согласно теории вероятности, все основания данного типа в секвенируемом фрагменте ДНК окажутся модифицированными. Следующие этапы удаления модифицированных оснований и β-элиминации обоих фосфатов, окружающих дезоксирибозу, и разрыва цепи должны проходить уже количественно. Для каждого типа нуклеотидов или их комбинации проводят отдельные реакции ограниченной модификации и количественного расщепления. Таким образом, в результате четырех (или иногда трех, пяти или даже шести) типов реакций образуется смесь олигонуклеотидных молекул, различающихся по размеру на один нуклеотид и несущих на одном из концов метку, обычно радиоактивную. Следует отметить, что кроме меченых молекул в реакционной смеси будут представлены, и олигонуклеотидные фрагменты, не несущие метки, но на этапе радиоавтографии они окажутся невидимыми и поэтому для данного метода они как бы не существуют. После разделения продуктов реакции в соседних дорожках секвенирующего денатурирующего полиакриламидного геля и этапа радиоавтографии на рентгеновской пленке будет видна лестница из полос ДНК на соседних дорожках, "чтение" которой позволяет восстановить последовательность нуклеотидов секвенируемого фрагмента ДНК. На рис. в виде упрощенной схемы показан весь процесс определения последовательности нуклеотидов ДНК данным методом, из которого у читателя уже должно сложиться общее представление о секвенировании ДНК методом химической деградации.
Рисунок 1 – Схема секвенирования ДНК химической деградацией
4 ПИРОСЕКВЕНИРОВАНИЕПиросеквенирование – это метод секвенирования ДНК (определение последовательности нуклеотидов в молекуле ДНК), основанный на принципе «секвенирование путем синтеза». При включении нуклеотида происходит детекция высвобождающихся пирофосфатов. Технология была разработана Полом Ниреном (Pål Nyrén) и его студентом Мустафой Ронаги, в Королевском Техническом Институте (Стокгольм) в 1996 году.
«Секвенирование путем синтеза» заключается в том, что для секвенирования одноцепочечной ДНК ферментативно синтезируют комплементарную цепочку. Метод пиросеквенирования основан на детекции активности фермента ДНК-полимеразы с другим хемилюминесцентным ферментом. Метод позволяет секвенировать одну цепочку нуклеотидов ДНК путем синтеза комплементарной цепочки, при этом регистрируется присоединение каждого нуклеотида. Матрица ДНК иммобилизована, растворы нуклеотидов A, C, G и T добавляются и отмываются последовательно после реакции. Свет образуется в тот момент, когда раствор нуклеотидов соответствует первому неспаренному основанию матрицы. Последовательность растворов, которые дают хемилюминесцентный сигнал, позволяет определить последовательность матрицы.
Матрица одноцепочечной ДНК гибридизуется с праймером и инкубируется с ферментами ДНК-полимеразой, АТФ-сульфурилазой, люциферазой и апиразой, а также с субстратами аденозин-5´-фосфосульфатами (APS) и люциферином.
Добавление одного из четырёх дезоксинуклеозидтрифосфатов (dNTP) (в случае dATP добавляют dATPαS, который не является субстратом для люциферазы) инициирует следующий этап. ДНК-полимераза включает правильный комплементарный дезоксинуклеотид в цепочку. При этом стехиометрически высвобождается пирофосфат (PPi).
Фермент АТФ-сульфурилаза количественно превращает PPi в аденозинтрифосфат (АТФ) в присутствии аденозин-5´-фосфосульфата. АТФ выступает «топливом» для фермента люциферазы, которая превращает люциферин в оксилюциферин, при этом высвобождается видимый свет, интенсивность которого пропорциональна количеству образовавшегося АТФ. Свет образуется в реакции, катализируемой люциферазой, регистрируется камерой и далее анализируется специальной компьютерной программой.
Невключённые нуклеотиды и АТФ подвергаются деградации ферментом апиразой, и реакция начинается с новым нуклеотидом.
В настоящий момент существуют некоторые ограничения в применения данного способа секвенирования. Лимитирующим фактором является длина последовательности нуклеотидов, которая составляет около 300-500 нуклеотидов, что короче, чем 800-1000 нуклеотидов, достижимые методом обрыва цепи (например, метод Сэнгера). Такие ограничения могут затруднять секвенирование геномов, в частности, богатых повторенными последовательностями нуклеотидов. К 2007 году, пиросеквенирование обычно использовали для повторного секвенирования или секвенирования геномов, для которых известна последовательность нуклеотидов родственного вида.
5 МЕТОДЫ СЕКВЕНИРОВАНИЯ ДНК НОВОГО ПОКОЛЕНИЯ. Чтобы снизить стоимость процедуры секвенирования и увеличить ее производительность, в новых методах определения нуклеотидной последовательности ДНК проводится секвенирование миллионов ее фрагментов одновременно. Отличительной особенностью методов секвенирования ДНК нового поколения является их направленность на получение нуклеотидных последовательностей целых геномов различных организмов, включая человека. Основные этапы процесса подготовки ДНК к секвенированию методами нового поколения. Первый этап представляет собой фрагментацию длинных молекул ДНК ультразвуком или ферментативной рестрикцией до размера 50–1000 п.н. Далее следует стадия обработки концов ДНК-фрагментов, в результате которой удаляются или достраиваются выступающие концы фрагментов, а затем лигируются адаптерные олигонуклеотиды. Затем полученная библиотека амплифицируется для увеличения представительности каждого фрагмента ДНК. Последний шаг – создание молекулярных колоний путем клональной амплификации каждого фрагмента библиотеки на твердой поверхности (подложка или микросфера). На этой стадии точное измерение концентрации библиотеки фрагментов ДНК является критическим, так как позволяет оптимизировать кластерную плотность, одновременно избегая ее переполнения на подложке. В случае микросфер добиваются того, что в каждой микрокапле с реакционной смесью в составе водно-масляной эмульсии содержится не более одной микросферы и одного фрагмента ДНК, способного с ней связаться комплементарно. Клональная амплификация необходима для усиления сигнала детектирующего присоединения к комплементарной цепи очередного нуклеотида, или сшивание праймера с зондом в процессе секвенирования (достраивания комплементарной цепи ДНК по ее одноцепочечной матрице). После клональной амплификации сигнал будет поступать уже от многих сотен тысяч копий одного анализируемого фрагмента ДНК. Подготовленная таким образом библиотека ДНК помещается в секвенатор, где стадии подачи реактивов для секвенирования чередуются со стадиями сканирования поверхности и регистрации получаемых сигналов. Сейчас высококачественного секвенирования геномов (точностью 99,999 % и более) добиваются, как минимум, после 30-кратного «прочтения» их последовательностей, секвенирование полного генома человека в этом случае требует прочтения не менее 90 млрд пар оснований ДНК. Последние модели секвенаторов нового поколения могут выполнить секвенирование до шестнадцати полных геномов человека всего за один рабочий цикл.
5.1 Высокопроизводительное пиросеквенирование ДНКВ 2004 г. компания «454 Life Sciences» дополнила метод пиросеквенирования возможностями современных технологий. Основой модификации явилось использование эмульсионной ПЦР с одновременной параллельной подготовкой многих сотен тысяч фрагментов ДНК для их секвенирования. После проведения всех предварительных этапов пробоподготовки каждый из четырех видов нуклеотидов, смешанный с другими реактивами для пиросеквенирования, подается последовательно в проточную камеру, куда помещается подложка, имеющая несколько миллиардов лунок, заполненных микросферами (одна лунка одна микросфера). Каждая микросфера содержит на своей поверхности после эмульсионной ПЦР многие сотни тысяч копий одного из исходных ДНК-фрагментов. Если в лунку попадает тип нуклеотидов, который комплементарен очередному нуклеотиду в достраиваемой одноцепочечной цепи матрицы ДНК, то полимераза встраивает эти нуклеотиды, что приводит через каскад реакций к высвобождению пирофосфата и генерации общего светового сигнала из лунки. Интенсивность сигнала из каждой лунки пропорциональна количеству нуклеотидов одного вида, встроенных в цепи ДНК за один проход реакционной смеси. Дно подложки находится в оптическом контакте с оптико-волоконным световодом, что позволяет регистрировать излучаемые фотоны со дна многих сотен тысяч лунок одновременно, в которых произошло встраивание очередного известного нуклеотида в достраиваемые комплементарные цепи ДНК в процессе пиросеквенирования. Длина единичного фрагмента ДНК, секвенируемого методом высокопроизводительного пиросеквенирования, достигает 1000 п.н. с точностью до 99 %. Производительность секвенирования последней из моделей – «GS FLX Titanium XL+» близка к 1 млрд п.н. за один рабочий цикл с консенсусной точностью до 99,997 % (при 15-кратном прочтении).
молекулярный кластер секвенирование
5.2 Секвенирование на молекулярных кластерах с использованием флуоресцентно-меченных предшественниковВ 2005 г. компанией «Illumina» предложен метод секвенирования ДНК на молекулярных кластерах с использованием флуоресцентно меченных предшественников, реализованный в виде платформы «Solexa». В этом методе фрагменты ДНК- матрицы фиксируют на подложке вместе с прайме- рами и проводят их амплификацию, в результате которой вокруг каждого исходного фиксированного фрагмента ДНК образуется около 1000 его копий. В целом на подложке образуются до миллиарда таких скоплений – кластеров. Далее ДНК денатурируют и проводят секвенирование ее одноцепочечных фрагментов. Для этого добавляют свободно плавающие праймеры и меченные флуоресцентными красителями разных цветов терминирующие нуклеотиды всех четырех типов, чтобы к каждому однонитевому фрагменту ДНК присоединился праймер и только 1 нуклеотид, цвет которого можно определить с помощью лазера. Затем присоединенный нуклеотид химически модифицируют, чтобы к нему мог присоединиться следующий терминирующий нуклеотид, таким образом, продолжают сиквенс (достраивание) комплементарной цепи, детектируя прибором флуоресценцию из многих сотен миллионов точек-кластеров одновременно. Длина единичного фрагмента ДНК, секвенируемого данным методом, достигает 300 п.н. с точностью 99 %. Последняя выпущенная компанией «Illumina» система секвенирования – «HiSeq X» за один цикл способна секвенировать до 16 полных геномов человека с 30-кратным перекрытием (1600 млрд. п.н.) и консенсусной точностью до 99,999%.
5.3 Циклическое лигазное секвенированиеВ 2007 г. компанией «Applied Biosystems» (теперь входит в состав корпорации «Life Technologies») была представлена платформа «SOLiD» на основе технологии циклического лигазного секвенирования. В данном методе также используют эмульсионную ПЦР, после которой каждая из микросфер содержит на своей поверхности около миллиона копий одного из исходных ДНК-фрагментов. Затем фрагменты ДНК денатурируют и модифицируют по 3′ концу, что позволяет ковалентно связать миллиарды микросфер, покрытых фрагментами ДНК, с подложкой. Затем следует процесс циклического лигазного секвенирования. К одноцепочечной матрице ДНК присоединяют праймер и добавляют синтезированные флуоресцентно меченные восьмичленные олигонуклеотидные зонды. Каждый зонд в позиции 1 и 2 содержит два известных нуклеотида, которые в сочетании со следующими тремя основаниями должны иметь комбинацию последовательности, комплементарную соответствующим коротким фрагментам матрицы. Последние 3 основания, одинаковые (универсальные) для всех зондов, имеют на конце флуоресцентную метку. После того, как один из зондов комплементарно связывается с первыми пятью основаниями от праймера на одноцепочечной матрице ДНК, лигаза сшивает его с праймером. При этом метка детектируется и удаляется вместе с последними тремя универсальными нуклеотидами зонда. Затем происходит сшивание (лигирование) другого зонда, комплементарно соединившегося со следующими пятью основаниями, от зонда уже присоединенного ранее и так далее до конца матрицы ДНК. После чего построенная комплементарная цепь удаляется, а к матрице добавляется праймер, который смещен по месту посадки на один нуклеотид относительно посадки предыдущего праймера, и весь процесс достройки второй цепи методом лигирования повторяется. Для определения полной последовательности секвенируемого фрагмента нужно провести эту процедуру с пятью праймерами, каждый из которых смещен относительно предыдущего праймера по месту посадки на один нуклеотид. Длина единичного фрагмента ДНК, секвенируемого методом лигирования, достигает 75 п.н. с точность до 99,99 %. Выпущенный компанией «Applied Biosystems» прибор «5500xl SOLiD System» способен за один цикл секвенировать 3 полных генома человека с 30-кратным покрытием и точностью 99,9999%.
5.4 Полупроводниковое секвенированиеВ 2010 г. компания «Ion Torrent» (США) (теперь входит в состав корпорации «Life Technologies») представила метод секвенирования ДНК на полупроводниковом чипе (Semiconductor sequencing). Данный метод не требует модификации нуклеотидных оснований, хемилюминесцентных или флуоресцентных меток. Когда нуклеотид включается в комплементарную достраиваемую цепь ДНК полимеразой, происходит выделение водородного иона как побочного продукта, что изменяет pH реакционной смеси, определе- ние этого изменения рН положено в основу детекции последовательности нуклеотидов ДНК при полупроводниковом секвенировании Пробоподготовка ДНК в данном методе практически не отличается от уже описанной для лигазного секвенирования. Проведение предварительной эмульсионной ПЦР здесь необходимо для усиления сигнала об изменении в значении рН. Это изменение рН в каждой отдельной лунке на чипе будет давать около миллиона копий одного из исходных ДНК- фрагментов, прикрепленных к поверхности микросферы. Для этого подготовленную таким образом библиотеку ДНК денатурируют и распределяют на микроэлектронный чип, имеющий миллионы микролунок (одна лунка – одна микросфера) с иончувствительной поверхностью, связанной с датчиками. Затем последовательно добавляют реакционные ПЦР смеси, отличающиеся по составу наличием в них только одного из 4 видов нуклеотидов, и детектируют изменение рН в лунках, где произошло встраивание этих нуклеотидов в комплементарные цепи ДНК-матриц. Основанный на данной технологии секвенатор «Personal Genome Machine» (PGM) в настоящее время за один цикл определяет до 2 млрд п.н., при этом длина единичного прочтения превышает 400 п.н. с точность 99,5 %. Метод полупроводникового секвенирования быстро совершенствуется и за последние 2 года увеличил свою производительность в 100 раз. Выпущенный новый прибор «Ion Proton» на основе данной технологии нацелен на секвенирование генома человека. В 2014 г. данная платформа за один цикл будет определять до 60 млрд п.н. Описанные системы секвенирования второго поколения значительно отличаются по производительности, стоимости и продолжительности рабочего цикла. По сочетанию всех этих параметров наиболее оптимальной для персонализации медицины выглядит система «HiSeq X», «NextSeq 500» и «Ion Proton», а для секвенирования бактериальных геномов – «MiSeq», или «PGM» (таблица).
6 МЕТОДЫ СЕКВЕНИРОВАНИЯ НОВЕЙШЕГО ПОКОЛЕНИЯ. Методы секвенирования третьего поколения (NNGS) призваны исправить основные недостатки методов второго поколения, а именно: сложную пробоподготовку, небольшую длину единичных прочтений, потребность в усилении сигнала от каждого из анализируемых фрагментов ДНК путем их амплификации, длительное время цикла, необходимость многочисленного повторного секвенирования. Технология секвенирования одной молекулы. В 2008 г. компания «Helicos BioSciences» впервые продемонстрировала на своем приборе метод секвенирования нуклеотидной последовательности единичных фрагментов ДНК без их предварительной амплификации. Эта технология – «tSMS» (true Single Molecule Sequencing) обладает очень высокой чувствительностью, благодаря разработанному компанией сверхнизкому фоновому свечению поверхности подложки, реагентам для секвенирования и способу визуализации. Согласно новому методу, ДНК разделяется на небольшие фрагменты, и к одному из концов каждого фрагмента с помощью специального фермента прикрепляют длинную последовательность из молекул аденина, имеющую в конце светящуюся метку. На специальную подложку прикрепляют последовательности из молекул тимина на расстоянии, позволяющем анализировать каждый фрагмент по отдельности. Когда образцы распределяют на подложку, то происходит комплементарное связывание последовательностей из тимина, прикрепленных на ее поверхности, с адениновыми последовательностями, связанными с фрагментами ДНК. Далее подложка сканируется, и по свечению меток находят положение каждого присоединенного отрезка молекулы ДНК. Затем метку удаляют и добавляют по очереди каждый из четырех типов меченых нуклеотидов, детектируя свечение в местах связывания, после чего метки от присоединенных нуклеотидов удаляют и вводят следующий тип меченых нуклеотидов. Так, нуклеотид за нуклеотидом последовательность достраивается по комплементарной цепи ДНК, что позволяет секвенировать фрагменты длиной до 55 п.н. Компьютер записывает положение миллионов вспышек после каждой реакции. Такая система обеспечивает прочтение миллиардов нуклеотидов в сутки с точностью до 99,999 % при 20-кратном перекрывании. Однако прибор, основанный на данной технологии («Heli Scope»), получился слишком дорогим, расход реагентов высоким при малой длине чтения нуклеотидных последовательностей. В ноябре 2012 г. компания «Helicos Biosience» была признана банкротом и прекратила свое существование.
6.1 Секвенирование единичных молекул в реальном времениВ 2009 г. был представлен метод секвенирования «Single Molecule RealTime» (SMRT), разработанный компанией «Pacific Biosciences». Секвенатор этой компании позволяет «читать» каждый фрагмент ДНК десятки раз, при этом консенсусная точность определения его нуклеотидной последовательности достигает 99,9 %. Технология данного метода основана на секвенировании в реальном времени однонитевых фрагментов ДНК длиной до 10000 п.н. и более с помощью ДНК-полимеразы. На дно специальных ячеек, расположенных на прозрачном стекле, прикрепляются одиночные молекулы ДНК- полимеразы. Область вокруг закрепленного фермента просвечивается с помощью специального лазера. В каждую ячейку добавляют нуклеотиды всех четырех типов, помеченные разными светящимися маркерами. Область, которую анализирует лазер, столь мала, что меченые нуклеотиды не задерживаются в ней достаточно долго, чтобы их свечение было зафиксировано прибором. Если же ДНК-фрагмент удерживается полимеразой, то во время достройки его комплементарной цепи сигнал от каждого присоединившегося нуклеотида фиксируется в сканируемой области. После присоединения очередного нуклеотида его светящаяся метка удаляется. Прибор «PacBio RS», основанный на этой технологии, имеет высокую собственную стоимость, но в то же время экспрессную пробоподготовку, высокую скорость и низкую стоимость секвенирования ДНК.
6.2 Секвенирование через нанопорыВозможность использовать матрицы с нанопорами для быстрого секвенирования ДНК исследуется уже более 15 лет в научных центрах Европы и США. Нанопоры представляют собой наноотверстия, которые могут быть биологическими, например порообразующий белок в мембране как липидный бислой, или твердотельными (из таких синтетических материалов, как нитрид кремния или графен). При секвенировании через нанопоры используется физическое различие между нуклеотидными основаниями для их идентификации в молекуле ДНК. Отрицательно заряженный одноцепочечный фрагмент ДНК длиной в несколько тысяч нуклеотидов протягивают через пору в мембране диаметром 2-5 нм, регистрируя изменение электропроводности нанопоры при помощи электродов по мере поочередного прохождения через нее нуклеотидов. Каждому типу основания соответствует свое изменение электропроводности из-за различия между ними по размерам, поэтому они закрывают пору в большей или меньшей степени и на разную продолжительность. Соответственно этому изменяется и электропроводность. Однако, данная технология имеет, по крайней мере, два серьезных технических препятствия для реализации: отсутствие надежного подхода к контролю продвижения ДНК через нанопоры и технические трудности в создании достаточно малых датчиков. В одном из вариантов для замедления прохождения фрагмента ДНК через нанопоры на его конец крепят магнитную микросферу. Чтобы тянуть молекулу за микросферу, испол?
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Расчет параметров участка электроэнергетической системы
Решение задач, Электрические системы, электроника, электротехника
Срок сдачи к 8 янв.
Доклад на тему "личность в теории деятельности а. н. леонтьева" + презентация
Доклад, Психология личности
Срок сдачи к 27 дек.
Заполнить журнал регистрации хозяйственных операций малого предприятия, проставив в нем корреспонденцию счетов
Другое, Финансовый учет и анализ
Срок сдачи к 4 янв.
9-11 страниц. правовые основы военной реформы в ссср в 20-е гг
Реферат, История государства и права России
Срок сдачи к 26 дек.
Заполните форму и узнайте цену на индивидуальную работу!