это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
2756556
Ознакомительный фрагмент работы:
ВВЕДЕНИЕ
Измерять температуру человечество научилось примерно 400 лет назад. Но первые приборы, напоминающие нынешние термометры, появились только в ХVIII веке. Изобретателем первого градусника стал ученый Габриэль Фаренгейт. Всего в мире было изобретено несколько разных температурных шкал, одни из них были более популярны и используются до сих пор, другие постепенно вышли из употребления.
Температурные шкалы – это системы температурных значений, которые возможно сопоставить между собой. Так как температура не относится к величинам, подлежащим непосредственному измерению, то значение ее связывают с изменением температурного состояния какого-либо вещества (например, воды). На всех температурных шкалах, как правило, фиксируют две точки, соответствующие температурам перехода выбранного термометрического вещества в разные фазы. Это так называемые реперные точки. Примерами реперных точек может служить точка закипания воды, точка твердения золота и т. п. Одну из точек принимают за начало отсчета. Интервал между ними делят на определенное количество равных отрезков, являющихся единичными.
Уильям Томсон (лорд Кельвин)
Родился 26 июня 1824 г. в Белфасте (Ирландия) в семье известного математика. Окончив колледж в Глазго (Шотландия), поступил в Кембриджский университет, по окончании которого отправился в Париж для стажировки в лаборатории французского физика-экспериментатора А. Реньо.
В 1846 г. Томсон занял кафедру естествознания в Университете Глазго. Он заведовал кафедрой физики в течение 53 лет, в последние годы жизни занимал пост президента университета. В круг интересов учёного входили термодинамика, гидродинамика, электромагнетизм, теория упругости, теплота, математика, техника. Ещё студентом он опубликовал несколько статей по применению рядов Фурье к различным разделам физики; разработал метод «зеркальных изображений» для решения задач электростатики (1846 г.).
Познакомившись с теоремой Карно, Томсон высказал идею абсолютной термодинамической шкалы (1848 г.). Он сформулировал второе начало термодинамики (1851 г.); заложил основы теории электромагнитных колебаний и в 1853 г. вывел зависимость периода собственных колебаний контура от его ёмкости и индуктивности (формула Томсона). В 1856 г. учёный открыл третий термодинамический эффект (эффект Томсона). [1]
Томсон внёс большой вклад в развитие практического применения науки: он был главным научным консультантом при прокладке первых трансатлантических кабелей, сконструировал ряд электрометрических и навигационных приборов. Известны исследования Томсона по теплопроводности, работы по теории приливов, распространению волн по поверхности, по теории вихревого движения. В 1892 г. учёному был пожалован титул барона Кельвина. В 1896 г. его избрали почётным членом Петербургской академии наук. [2]
В последние годы жизни Томсона интересовали рентгеновские лучи и радиоактивность, он выполнил расчёты по определению размеров молекул, выдвинул гипотезу о строении атомов.
Умер 17 декабря 1907 г. в своём имении близ города Лэрг (графство Северный Эйршир, Шотландия), похоронен в Вестминстерском аббатстве.
Шкала Кельвина
История и задачи
Уильям Томсон, будущий лорд Кельвин, в своей работе «Об абсолютной термометрической шкале» («On an Absolute Thermometric Scale») пишет о необходимости шкалы, нулевая точка которой будет соответствовать предельной степени холода (абсолютному нулю), а ценой деления будет градус Цельсия. Эта абсолютная шкала на сегодняшний день известна как термодинамическая шкала Кельвина. Значение «минус 273» было получено как обратное от 0,00366 — коэффициента расширения газа на градус Цельсия.
Третья резолюция Х Генеральной конференции по мерам и весам (ГКМВ) дала шкале Кельвина современное определение, взяв температуру тройной точки воды в качестве второй опорной точки и приняв, что её значение составляет ровно 273,16 кельвина («градуса Кельвина» в терминологии того времени).
В соответствии с третьей резолюцией XIII Генеральной конференции по мерам и весам единица измерения термодинамической шкалы была переименована в «кельвин», а обозначением стал «К» (ранее единица называлась «градус Кельвина», её обозначением был «°K»). Кроме того величина единицы была определена более явно — как равная 1/273,16 тройной точки воды. [1]
На 26-й генеральной конференции по мерам и весам была принята резолюция о значительном переопределении основных единиц СИ, которое, в частности включало в себя переопределение кельвина через значение постоянной Больцмана, которая равна 1,380649 × 10-23 Дж / К. [3]
Недостатком старого определения кельвина являлось то, что при практической реализации величина кельвина оказывалась зависящей от чистоты и изотопного состава используемой воды. Исходя из стремления устранить этот недостаток, XXIV ГКМВ, состоявшаяся 17—21 октября 2011 года, приняла резолюцию, в которой, в частности, было предложено в будущей ревизии Международной системы единиц переопределить кельвин, связав его величину со значением постоянной Больцмана. При этом предполагалось, что значение постоянной Больцмана будет зафиксировано, то есть будет считаться определённым точно. В связи с этим в резолюции XXIV ГКМВ по поводу кельвина сформулировано:
Кельвин останется единицей термодинамической температуры; но его величина будет устанавливаться фиксацией численного значения постоянной Больцмана равным в точности 1,380 6X⋅10−23, когда она выражена единицей СИ м2·кг·с−2·К−1, что эквивалентно Дж·К−1. [3]
Таким образом, стало выполняться точное равенство k=1,380 6X⋅10−23 Дж/К. Следствием этого явилось то, что кельвин стал равным изменению температуры, которое приводит к изменению энергии, приходящейся на одну степень свободы kT2 на k⁄2, то есть на ½⋅1,380 6X⋅10−23 Дж. [3]
В своей резолюции XXIV ГКМВ отметила также, что непосредственно после переопределения кельвина температура тройной точки воды останется равной 273,16 К, но при этом её значение приобретёт погрешность и в дальнейшем будет определяться экспериментально.
XXV ГКМВ, состоявшаяся в 2014 году, приняла решение продолжить работу по подготовке новой ревизии СИ, включающей переопределение кельвина, и наметила закончить эту работу к 2018 году с тем, чтобы заменить существующую редакцию Международной системы единиц (СИ) обновлённым вариантом на XXVI ГКМВ в том же году.
Рисунок 1 – Шкала Кельвина
Температурные шкалы
Измерять температуру человечество научилось примерно 400 лет назад. Но первые приборы, напоминающие нынешние термометры, появились только в ХVIII веке. Изобретателем первого градусника стал ученый Габриэль Фаренгейт. Всего в мире было изобретено несколько разных температурных шкал, одни из них были более популярны и используются до сих пор, другие постепенно вышли из употребления. [1]
Температурные шкалы – это системы температурных значений, которые возможно сопоставить между собой. Так как температура не относится к величинам, подлежащим непосредственному измерению, то значение ее связывают с изменением температурного состояния какого-либо вещества (например, воды). На всех температурных шкалах, как правило, фиксируют две точки, соответствующие температурам перехода выбранного термометрического вещества в разные фазы. Это так называемые реперные точки. Примерами реперных точек может служить точка закипания воды, точка твердения золота и т. п. Одну из точек принимают за начало отсчета. Интервал между ними делят на определенное количество равных отрезков, являющихся единичными. За единицу измерения температуры повсеместно принят один градус. температура шкала прибор
Наиболее популярные и получившие самое широкое распространение в мире шкалы температур – шкала Цельсия и Фаренгейта.
Рассмотрим по порядку имеющиеся шкалы и попробуем сравнить их с точки зрения удобства использования и практической пользы. Наиболее известные шкалы: [2]
Шкала Фаренгейта
Шкала Реомюра
Шкала Цельсия,
Шкала Кельвина
Шкала Ранкина
Шкала Ньютона
Шкала Цельсия
Градус Цельсия(обозначение °С) - единица измерения температуры, названа в честь её основателя Андерса Цельсия(1701-1744 гг) шведского учёного, профессора астрономии Упсальского университета.
Андерс Цельсия предложил шкалу измерения температуры в которой за 0 градусов принята температура кипения воды при нормальном атмосферном давлении (1 атм) и за 100 градусов температура таяния льда, шкала на всём протяжении линейна. [2]
На практике, при использовании термометров гораздо удобнее принять за 0°С температуру таяния льда, а за 100°С температуру кипения воды, что и было сделано в 1744 году, уже после смерти Андерса Цельсия.
В связи с тем, что температуру замерзания и кипения воды достаточно сложно определить с большой точностью, а один градус Цельсия по значимости равен одному Кельвину, то в современной науке градус Цельсия определяют через Кельвин по формуле:
1°С = 1K - 273.15
, где 273.15 разность между температурой тройной точки воды в Кельвинах и температурой тройной точки воды в градусах Цельсия.
Температурная шкала Цельсия очень удобна для применения на земле, так как многое состоит из воды, так же нуль градусов Цельсия является переломной точкой для метеорологии, поскольку изменяется состояние воды, что может вызвать различные природные явления.
Рисунок 2 – Шкала Цельсия
Шкала Реомюра
Французский естествоиспытатель Рене Антуан Фершо де Реомюр родился 28 февраля 1683 года в Ла-Рошели в семье нотариуса. Получил образование в школе иезуитов в Пуатье. С 1699 года изучал право и математику в университете Бурже. В 1703 году продолжил изучение математики и физики в Париже. После того, как в 1708 году Рене опубликовал свои первые три работы в области математики, он был принят в члены Парижской Академии Наук. [2]
Научные труды Реомюра довольно разнообразны. Он занимался математикой, химической технологией, ботаникой, физикой и зоологией. Но в двух последних предметах он преуспел больше, поэтому, основные его труды были посвящены именно этим темам.
В 1730 году Реомюр описал изобретённый им спиртовой термометр, шкала которого определялась точками кипения и замерзания воды. 1 градус Реомюра равен 1/80 части температурного интервала между точками таяния льда (0 °R) и кипения воды (80 °R
Припаяв к круглой колбочке тонкую трубку, Реомюр залил в нее спирт, по мере возможности очищенный от воды и растворенных газов. В своем мемуаре он отмечает, что его жидкость содержала не более 5 процентов воды.
Трубка не запаивалась — Реомюр лишь затыкал ее замазкой на основе скипидара.
На самом деле опорная точка была у Реомюра всего одна: температура таяния льда. А величину градуса он определил вовсе не делением какого-то интервала температур на невесть откуда взявшееся число 80. В действительности он решил принять за один градус такое изменение температуры, при котором объем спирта возрастает или убывает на 1/1000. Таким образом, термометр Реомюра можно считать, по существу, большим пикнометром, точнее — примитивным прототипом этого физико-химического прибора.
Начиная с 1734 г. Реомюр в течение пяти лет публиковал отчеты об измерениях температур воздуха с помощью предложенного им прибора в различных местностях, от центральных районов Франции до индийского порта Пондишери, однако позднее термометрию забросил. [1]
В наше время шкала Реомюра вышла из употребления.
Рисунок 3 – Шкала Реомюра
Шкала Фаренгейта
Во многих справочниках, в том числе в русской Википедии, Даниэль Габриель Фаренгейт упоминается как немецкий физик. Однако согласно энциклопедии «Британника», он был голландским физиком, родившимся в Польше в г. Гданьске 24 мая 1686 г. Фаренгейт сам изготавливал научные инструменты и в 1709 г. изобрел спиртовой термометр, а в 1714 г. ртутный термометр. [2]
В 1724 г. Фаренгейт стал членом Лондонского Королевского Общества и представил ему свою шкалу температур. Шкала была построена на основе трех опорных точек. В первоначальном варианте (который в дальнейшем был изменен) за нулевую точку он принял температуру соляного раствора (лед, вода и хлорид аммония в соотношении 1:1:1). Стабилизация температуры такого раствора происходила при 0 °F (-17.78 °C). Вторая точка 32 °F была точкой плавления льда, т.е. температурой смеси льда и воды в соотношении 1:1 ( 0 °C). Третья точка – это нормальная температура человеческого тела, которой он приписал 96 °F.
Почему были выбраны такие странные, некруглые цифры? Согласно одной из историй, Фаренгейт первоначально выбрал за ноль своей шкалы самую низкую температуру, измеренную в его родном городе Гданьске зимой 1708/1709 г. Позже, когда стало необходимо сделать эту температуру хорошо воспроизводимой, он использовал для ее воспроизведения соляной раствор. Одно из объяснений неточности полученной температуры в том, что Фаренгейт не имел возможности сделать хороший соляной раствор, чтобы получить точный эвтектический равновесный состав хлорида аммония (то есть, он, возможно, растворял несколько солей, причем не полностью).
Еще одна интересная история связана с письмом Фаренгейта его другу Герману Бурхавэ. Согласно письму, его шкала была создана на основе работы астронома Олофа Рёмера, с которым Фаренгейт ранее общался. В шкале Рёмера соляной раствор замерзает при нуле градусов, вода при 7,5 градусах, температура тела человека принята за 22,5 градуса и вода кипит при 60 градусах (есть мнение, что это по аналогии с 60 сек. в часе). Фаренгейт умножил каждое из чисел на четыре, чтобы убрать дробную часть. При этом точка плавления льда оказалась равной 30 градусов, а температура человека 90 градусов. Он пошел дальше и сдвинул шкалу так, чтобы точка льда была равна 32 градусов, а температура тела человека 96 градусов. Таким образом появилась возможность разбить интервал между этими двумя точками, составивший 64 градусов, простым многократным делением промежутка пополам. (64 это 2 в шестой степени). [3]
При измерении своими отградуированными термометрами температуры кипения воды Фаренгейт получил значение около 212 °F . В дальнейшем ученые решили немного переопределить шкалу, приписав точное значение двум хорошо воспроизводимым реперным точкам: температуре плавления льда 32 °F и температуре кипения воды 212 °F. При этом нормальная температура человека по такой шкале после новых, более точных измерений получилась около 98 °F , а не 96 °F.
Рисунок 4 – Шкала Фаренгейта
Шкала Ранкина
Шкала Ранкина (измеряется в градусах Ранкина — °Ra) — абсолютная температурная шкала, названа по имени шотландского физика Уильяма Ранкина (1820—1872). Используется в англоязычных странах для инженерных термодинамических расчётов. [1]
Шкала Ранкина начинается при температуре абсолютного нуля, точка замерзания воды соответствует 491,67 °Ra, точка кипения воды 671,67 °Ra. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.
Соотношение между кельвином и градусом Ранкина: 1 K = 1,8 °Ra, градусы Фаренгейта переводятся в градусы Ранкина по формуле °Ra = °F + 459,67.
Рисунок 5 – Шкала Ранкина
Шкала Ньютона
Градус Ньютона (°N) — не используемая ныне единица температуры.
Температурная шкала Ньютона была разработана Исааком Ньютоном в 1701 году для проведения теплофизических исследований.
В качестве термометрической жидкости Ньютон использовал льняное масло. За ноль градусов Ньютон взял температуру замерзания пресной воды, а температуру человеческого тела он обозначил как 12 градусов. Таким образом, температура кипения воды стала равна 33 градусам. [1]
Рисунок 6 – Шкала Ньютона
Шкала Делиля
Гра́дус Дели́ля (обозначение: °Д или °D)— ныне неупотребляемая единица измерения температуры. Была изобретена французским астрономом Жозефом Николя Делилем (1688—1768). Шкала Делиля схожа с температурной шкалой Реомюра. Использовалась в России до XVIII века.
Петр Первый пригласил французского астронома Жозефа Николя Делиля в Россию, учреждая Академию Наук. В 1732 году Делиль создал термометр, использующий ртуть в качестве рабочей жидкости. В качестве нуля была выбрана температура кипения воды. За один градус было принято такое изменение температуры, которое приводило к уменьшению объёма ртути на одну стотысячную.
Таким образом, температура таяния льда составила 2400 градусов. Однако позже столь дробная шкала показалась избыточной, и уже зимой 1738 года коллега Делиля по петербургской академии, медик Иосия Вейтбрехт (1702—1747), уменьшил число ступеней от температуры кипения до температуры замерзания воды до 150. [2]
«Перевернутость» этой шкалы (как и изначального варианта шкалы Цельсия) по сравнению с принятыми в настоящее время обычно объясняют чисто техническими трудностями, связанными с градуировкой термометров.
Шкала Делиля получила достаточно широкое распространение в России, и его термометры использовались около 100 лет. Этой шкалой пользовались многие российские академики, в том числе Михаил Ломоносов, который, однако «перевернул» её, расположив ноль в точке замерзания, а 150 градусов — в точке кипения воды.
Шкала Рёмера
Градус Рёмера (°Rø) — неиспользуемая ныне единица температуры.
Температурная шкала Рёмера была создана в 1701 году датским астрономом Оле Кристенсеном Рёмером. Она стала прообразом шкалы Фаренгейта, который посещал Рёмера в 1708 году.
За нуль градусов берётся температура замерзания солёной воды. Вторая реперная точка — температура человеческого тела (30 градусов по измерениям Рёмера, то есть 42 °C). Тогда температура замерзания пресной воды получается как 7,5 градусов (1/8 шкалы), а температура кипения воды — 60 градусов. Таким образом, шкала Рёмера — 60-градусная. Такой выбор, по-видимому, объясняется тем, что Рёмер прежде всего астроном, а число 60 было краеугольным камнем астрономии со времён Вавилона. [3]
Сравнительная характеристика температурных шкал
Нормальная температура человеческого тела — 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены. [3]
Таблица 1
Сравнение температурных шкал
ЗАКЛЮЧЕНИЕ
Температура играет важную роль в повседневной жизни, в познании природы, исследовании новых явлений, а ее единица — кельвин К — является одной из семи основных единиц, на которых основана Международная система единиц.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. С.Ф. Чистяков, Д.В. Радун "Технические измерения и приборы", М.: "Высшая школа" 19722
2. О.М. Блинов, А.М. Беленький, В.Ф. Бердышев "Теплотехнические измерения и приборы", М.: "Металлургия" 19933
3. А.И. Сергеев, "Методические указания к лабораторным работам по дисциплине "Метрология, стандартизация и сертификация", Магнитогорск: МГТУ, 1999.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить курсовой по Транспортной логистике. С-07082
Курсовая, Транспортная логистика
Срок сдачи к 14 дек.
Роль волонтеров в мероприятиях туристской направленности
Курсовая, Координация работы служб туризма и гостеприимства
Срок сдачи к 13 дек.
Контрольная работа
Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления
Срок сдачи к 30 дек.
Написать курсовую по теме: Нематериальные активы и их роль в деятельности предприятия.
Курсовая, Экономика организации
Срок сдачи к 14 дек.
написать доклад на тему: Процесс планирования персонала проекта.
Доклад, Управение проектами
Срок сдачи к 13 дек.
Заполните форму и узнайте цену на индивидуальную работу!