это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
30839
200 руб.
Ознакомительный фрагмент работы:
реферат тема 3
Реферат сделать точно так же как в образце. 3. Смачивание. Физический процесс взаимодействия жидкости и твердым телом
Содержание
Тема № 3: Смачивание. Физический процесс взаимодействия жидкости и твердым телом
Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1. Общая характеристика процесса смачивания . . . . . . . . . . . . . . . 5
2. Адгезия и когезия . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3. Смачивание и растекание . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
4. Влияние смачивания на промышленные и природные
процессы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Введение
Смачивание очень широко распространено в природе, технике, сельском хозяйстве, повседневном быту и играет важную, а иногда определяющую роль в протекании многих природных и технологических процессов. Для оптимального управления такими процессами необходимо выяснение законов смачивания.
Смачивание — это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой жидкости. Смачивание бывает двух видов:
Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью)
Контактное (состоит из трёх фаз — твердая, жидкая, газообразная)
Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).
Если жидкость контактирует с твёрдым телом, то существуют две возможности:
- молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведёт себя ртуть на стекле, вода на парафине или «жирной» поверхности. В этом случае говорят, что жидкость не смачивает поверхность;
- молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведёт себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность.
Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. В случае порошков надёжных методов, дающих высокую степень воспроизводимости, пока (по состоянию на 2008 год) не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.
Измерение степени смачивания весьма важно во многих отраслях промышленности (лакокрасочная, фармацевтическая, косметическая и т. д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла[2].
К примеру, популярный метод увеличения добычи нефти при помощи закачки воды в пласт исходит из того, что вода заполняет поры и выдавливает нефть. В случае мелких пор и чистой воды это далеко не так, поэтому приходится добавлять специальные ПАВ. Оценку смачиваемости горных пород при добавлении различных по составу растворов можно измерить различными приборами.
Получение слоистых пластиков связано с изготовлением на разных этапах технологического процесса слоистых наполнителей – тканей, бумаг, шпона - поверхность которых покрыта связующим – либо олигомерным, либо полимерным.
Получение таких заготовок (препрегов) тесно связано с явлением смачивания – взаимодействием жидкого связующего с поверхностью наполнителя. Хорошее смачивание полимером наполнителя является необходимым, хотя и не достаточным, условием образования прочного адгезионого соединения. Возможность достижения полного (или частичного) смачивания поверхности в значительной степени определяется термодинамикой процессов, происходящих на поверхности при ее контакте со связующим.
1. Общая характеристика процесса смачивания
Смачивание — явление, возникающее вследствие взаимодействия молекул жидкости с молекулами твердых тел. Если силы притяжения между молекулами жидкости и твердого тела больше сил притяжения между молекулами жидкости, то жидкость называют смачивающей; если силы притяжения жидкости и твердого тела меньше сил притяжения между молекулами жидкости, то жидкость называют несмачивающей это тело.
Одна и та же жидкость может быть смачивающей и несмачивающей по отношению к разным телам. Так, вода смачивает стекло и не смачивает жирную поверхность, ртуть не смачивает стекло, а смачивает медь.
Смачивание или несмачивание жидкостью стенок сосуда, в котором она находится, влияет на форму свободной поверхности жидкости в сосуде. Если большое количество жидкости налито в сосуд, то форма ее поверхности определяется силой тяжести, которая обеспечивает плоскую и горизонтальную поверхность. Однако у самых стенок поверхность жидкости все-таки искривляется.
Рис. 1
Рассмотрим молекулу жидкости у стенки сосуда (рис.1). Пусть равнодействующая сил, действующих на эту молекулу со стороны твердого тела, — со стороны молекул жидкости. Сила перпендикулярна стенке, направлена под углом 45° к стенке. Для смачивающей жидкости (рис.1,а) модули сил . Равнодействующая этих сил является силой молекулярного давления, приложенной к молекулам, и должна быть направлена в глубь жидкости перпендикулярно ее поверхности. Поэтому поверхность вблизи стенок не горизонтальна, а искривляется. Аналогично доказывается искривление у стенок свободной поверхности и для несмачивающей жидкости (рис.1,б).
Рис. 2
Мерой смачивания служит краевой угол — это угол между плоскостью, касательной к поверхности жидкости, и стенкой (плоскостью поверхности твердого тела). Внутри краевого угла всегда находится жидкость (рис. 2,а,б). Для смачивающей жидкости угол — острый, для несмачивающей — тупой. При полном смачивании = 0, при полном несмачивании = 180°. Если смачивающая жидкость находится на открытой поверхности твердого тела (рис. 3, а), то происходит ее растекание по этой поверхности. Если на открытой поверхности твердого тела находится несмачивающая жидкость, то она принимает форму, близкую к шаровой (рис. 3, б).
Рис. 3
Смачивание имеет важное значение как в быту, так и в промышленности. Хорошее смачивание необходимо при крашении, стирке, обработке фотоматериалов, нанесении лакокрасочных покрытий, при склеивании материалов, при пайке, во флотационных процессах (обогащение руд ценной породой).
И наоборот, при сооружении гидроизоляционных устройств необходимы материалы, не смачиваемые водой.
Термодинамика смачивания.
В зависимости от числа фаз, участвующих в смачивании различают два основных случая:
Смачивание при полном погружении твердого тела в жидкость (иммерсионное смачивание), в котором участвуют только две фазы -жидкость и твердое тело. Иммерсионное смачивание реализуется обычно при смачивании порошков и мелких частиц.
Контактное смачивание, в котором наряду с жидкостью, с твердым телом контактирует третья фаза – газ или другая жидкость. Возможны также случаи, когда в смачивании участвуют четыре разных фазы- твердое тело, газ, две жидкости.
Характер смачивания определяется прежде всего физико-химическими взаимодействиями на поверхности раздела фаз, которые участвуют в смачивании. Интенсивность этих взаимодействий при иммерсионном смачивании характеризуется теплотой смачивания.
Контактное смачивание характеризуется чаще всего величиной краевого угла – угла между поверхностями жидкости и твердого тела на границе с окружающей средой.
1.1. Необходимо различать равновесные и неравновесные краевые углы. Равновесный краевой угол о зависит только от термодинамических свойств системы, а именно от поверхностных натяжений на границах раздела фаз, участвующих в смачивании. Поэтому для каждой системы при данных внешних условиях равновесный краевой угол имеет одно определенное значение.
Краевые углы, которые измерены при отклонении системы от состояния термодинамического равновесия, называются неравновесными. Иногда неравновесные краевые углы контактными, а термин “краевой угол” используют только для характеристики равновесного состояния при смачивании.
Неравновесные краевые углы могут изменяться при постоянной площади смачивания вследствие постоянного изменения свойств системы или объема капли за счет различных физико-химических процессов – испарение жидкости, взаимного растворения твердого тела и жидкости, адсорбции, химических реакций. В таких случаях изменение неравновесных краевых углов определяется уже не скоростью растекания жидкости, а одним из сопутствующих физико-химических процессов.
В зависимости от значений равновесного краевого угла различают три основных случая.
1. несмачивание (плохое смачивание) – краевой угол тупой: 180о>о >90о. Пример: вода на парафине или тефлоне.
2. смачивание (ограниченное смачивание) - краевой угол острый: 90о>о >0о.
Пример: вода на металле, покрытом оксидной пленкой.
3. полное смачивание - равновесный краевой угол не устанавливается, капля растекается в тонкую пленку.
Пример: ртуть на поверхности свинца, очищенной от оксидной пленки.
Величина равновесного краевого угла определяется соотношением сил притяжения жидкости к твердому телу (или к жидкой подложке) и сил взаимного притяжения между частицами (молекулами) самой жидкости.
Смачивание и несмачивание на границе жидкость-жидкость и твердое тело-жидкость. Явления, которые возникают на границе двух несмешивающихся жидкостей, определяются силами поверхностного натяжения. Хорошо известно, что разные жидкости ведут себя по-разному. Так, капля масла, помещенная на поверхность воды, принимает форму линзы, а капля бензина растекается на поверхности воды, образуя очень тонкую пленку.
Рассмотрим условия, при которых реализуется та или другая ситуация. Пусть имеем границу трех сред: жидкость 1 граничит с жидкостью 2, жидкости 1 и 2 граничат со средой 3, которая представляет собой смесь воздуха и паров жидкостей 1 и 2.
Рис. 4
Рассмотрим случай, когда капля жидкости 2 под действием силы тяжести втягивается в жидкость 1, приобретая форму линзы (рис.4). Граница соприкосновения трех сред представляет собой окружность. На каждый элемент длины Δl этой окружности действуют три силы:
Все эти силы направлены по касательным к поверхностям соприкосновения граничащих сред, – коэффициенты поверхностного натяжения на соответствующих границах раздела.
Поскольку газовые среды оказывают слабое влияние на поверхностное натяжение граничащей с ними жидкости, то можно приблизительно считать, что и . Капля жидкости 2 будет находиться в равновесии при условии, что все действующие на нее силы друг друга взаимно уравновешивают. Спроектировав все действующие на каплю 2 силы на горизонтальное и вертикальное направления, получаем Используя выражения предыдущие равенства можно записать:
Возведя в квадрат последние соотношения и сложив их, получаем:
Используя обозначение , последнее равенство можно записать:
Полученное равенство показывает, что угол θ определяется значениями коэффициентов поверхностного натяжения, то есть, в конечном счете, силами молекулярного взаимодействия между молекулами каждой жидкости и молекулами граничащих с ней сред.
Очевидно, что при некотором соотношении между может возникнуть ситуация, при которой cosθ окажется равным единице. Это означает, что угол θ равен нулю. Значение краевого угла θ = 0 соответствует условию, при котором жидкость 2 растекается по поверхности жидкости 1 в виде очень тонкой пленки. В этом случае принято говорить, что жидкость 2 полностью смачивает жидкость 1. Таким образом, полное смачивание наблюдается при выполнении условия
В том случае, когда выполняется неравенство
капля жидкости 2 на поверхности жидкости 1 будет стягиваться до тех пор, пока не наступит ситуация, соответствующая выполнению условия
Это условие определяет положение жидкости 2 на поверхности жидкости 1 в виде двояковыпуклой линзы, как это представлено на рис. 4.
Рассмотрим условия смачивания и несмачивания на границе жидкости с твердым телом. Следует отметить, что поверхностным натяжением обладают не только жидкости, но и твердые тела. Наличие в твердых телах строго периодической кристаллической структуры свидетельствует о наличии в них сил притяжения между молекулами. Благодаря наличию этих сил поверхностное натяжение возникает и в твердых телах.
Рис. 5
Пусть капля жидкости 2 помещена на поверхность твердого тела 1 (рис. 5). На рисунке указаны силы поверхностного натяжения, действующие на границе жидкость-твердое тело (), жидкость-газ () и твердое тело-газ (). Ясно, что поведение капли на поверхности твердого тела зависит от величины этих сил.
Рассмотрим два случая. Если
, то жидкость 2 растекается по поверхности тела 1 до образования очень тонкой пленки вплоть до образования мономолекулярного слоя. При выполнении этого условия наступает полное смачивание жидкостью поверхности твердого тела. Угол θ при этом равен 0. Если при некотором соотношении между , а также значении оказывается справедливым равенство
, то имеет место так называемое неполное смачивание. Жидкость 2 растекается по поверхности твердого тела до тех пор, пока не выполнится последнее равенство.
Рис. 6
Угол θ при этом является острым (рис.6.а). Некоторые жидкости на поверхности твердого тела образуют капли, равновесная форма которых определяется неравенством
При этом угол θ является тупым углом (рис.6.б). Силы и стремятся придать капле сферическую форму, чему препятствует действующая на каплю сила тяжести. В этом случае имеет место частичное несмачивание.
В реальной ситуации при взаимодействии жидкости с твердым телом реализуются, как правило, две возможности – либо частичное смачивание , либо частичное несмачивание .
2. Адгезия и когезия
Когезия характеризует взаимное притяжение частиц (атомов, молекул) однородного тела, обусловленное силами межмолекулярного взаимодействия, действующими внутри тела.
Когезия характеризует прочность тел на разрыв. Она сильна в твердых телах, меньше в жидкостях.
Адгезия характеризует взаимное притяжение частиц различных тел в области их соприкосновения (т.е. на поверхности раздела фаз), обусловленное силами межмолекулярного взаимодействия, действующими между этими телами.
Количественно когезия и адгезия характеризуются соответственно работой когезии Wк и работой адгезии W. Эти величины измеряются в тех же единицах, что и поверхностное натяжение (Дж/м2, Н/м), и они связаны с поверхностным натяжением (рис. 7).
Работа когезии Wк – работа, которую надо совершить для разрыва однородного тела по сечению с единичной площадью на две части. Эта работа затрачивается на разрыв межмолекулярных связей внутри тела. Представим мысленно цилиндр из какой-либо жидкости с единичной площадью сечения S (рис. 7). Разорвем этот цилиндр на 2 части.
933450114300 S
S
S
00 S
S
S
Рис. 7. К выводу соотношения между когезией и
поверхностным натяжением
Образовалась новая поверхность площадью 2S на границе жидкость – газ. Если вспомнить физический смысл поверхностного натяжения (это работа, которую надо совершить, чтобы увеличить на единицу площадь поверхности раздела фаз), то можно записать
Wк = 2Ж-Г,
где Wк – работа когезии, Дж/м2;
Ж-Г – поверхностное натяжение на границе раздела жидкость – газ, Дж/м2.
При разрыве твердого тела на две части работа когезии соответственно равна
Wк = 2Т-Г,
где Т-Г – поверхностное натяжение на границе разделатвердое тело – газ, Дж/м2.
Следовательно можно отметить, что работа когезии тем больше, чем больше величина поверхностного натяжения.
Работа адгезии W – работа, которую надо совершить для разрыва двух соприкасающихся тел с единичной площадью контакта. Эта работа затрачивается на разрыв межмолекулярных связей, возникающих на границе раздела фаз.
88900236220 Ж2S
Ж2 Ж1 Ж1 Ж1-Г
Ж2-Г
Ж1- Ж2
00 Ж2S
Ж2 Ж1 Ж1 Ж1-Г
Ж2-Г
Ж1- Ж2
Рис. 8. К выводу соотношения между адгезией и
поверхностным натяжением
Пусть в соприкосновении находятся две несмешивающиеся жидкости с единичной площадью контакта. Граница раздела фаз характеризуется поверхностным натяжением Ж1- Ж2. После разрыва исчезла граница раздела фаз ж1-ж2, но появились две новые площади поверхности, которые характеризуются поверхностным натяжением Ж1- Г и Ж2 - Г.
Очевидно, что работу адгезии можно рассчитать по формуле
Wa = Ж1- Г + Ж2 - Г – Ж1- Ж2
Это выражение называется уравнением Дюпре.
По аналогии при отрыве жидкости от твердой поверхности совершается работа адгезии, равная:
Wa = Ж - Г + Т - Г – Т - Ж
По первому уравнению работу адгезии вычислить достаточно легко, поскольку все входящие в него величины определяются экспериментально.
По второму уравнению рассчитать Wа практически невозможно, т.к. определение поверхностного натяжения на границе с твердым телом представляет собой сложную экспериментальную задачу.
Силы когезии и адгезии играют большую роль в процессах смачивания и несмачивания жидкостями твердых тел, склеивания материалов, нанесения лакокрасочных и других покрытий, печатания, крашения.
3. Смачивание и растекание
Смачивание – это поверхностное явление, заключающееся во взаимодействии жидкости с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом (воздухом).
При нанесении капли жидкости на поверхность твердого тела (или другой жидкости) можно наблюдать разные явления. В одном случае нанесенная жидкость сохраняет форму капли, в другом случае капля растекается по поверхности. Рассмотрим первый случай (рис. 9)
Рис. 9. Смачивание жидкостью твердого тела
Линия соприкосновения трех фаз называется периметром смачивания. Угол называется краевым углом смачивания. Он отсчитывается со стороны жидкости. Поскольку капля находится в состоянии равновесия, действие сил на нее скомпенсировано. Рассмотрим эти силы. Как известно, силы поверхностного натяжения направлены на сокращение площади контакта фаз и действуют по касательной к поверхности. На рис. 3 эти силы представлены векторами, выходящими из точки соприкосновения всех трех фаз.
Т-Г – стремиться уменьшить площадь контакта твердого тела с газом, поэтому растягивает пленку жидкости по твердому телу.
Т-Ж – стремится уменьшить площадь контакта твердого тела с жидкостью, поэтому стягивает каплю жидкости в шарик.
Ж-Г – стремится уменьшить площадь контакта жидкости с газом, поэтому стягивает каплю жидкости в шарик (шарообразная поверхность имеет наименьшую площадь).
Рассмотрим равнодействующую сил, действующих на каплю в точке О вдоль поверхности твердого тела. Эти силы поверхностного натяжения Т-Г, Т-Ж, а также проекция Ж-Г на выбранную ось = Ж-Г . cos.
В состоянии равновесия равнодействующая сил равна 0:
Т-Г = Т-Ж + Ж-Г . cos
Полученное соотношение называется законом Юнга.
Краевой угол смачивания или cos являются количественной характеристикой смачивания. Чем меньше угол и соответственно больше cos, тем лучше смачивается поверхность.
Закон Юнга позволяет выразить cos через поверхностные межфазные натяжения:
Сочетание уравнения Дюпре с законом Юнга позволяет выразить работу адгезии Wa через косинус краевого угла смачивания .
Из уравнения выразим разность
Т-Г – Т-Ж = Ж-Г . cos
Полученную разность подставим в предыдущее уравнение
Wa = Ж-Г + Ж-Г . cos = Ж-Г(1 + cos)
Это уравнение называют уравнением Дюпре – Юнга. Оно позволяет рассчитать работу адгезии, если известно поверхностное натяжение жидкости и краевой угол смачивания. Обе эти величины сравнительно легко определяются экспериментально: определяют путем проектирования капли на экран (с помощью несложной установки) и измерения краевого угла на проекции капли. С помощью уравнения Дюпре – Юнга легко найти соотношение между работой когезии смачивающей жидкости и работой адгезии между жидкостью и смачиваемым телом.
Краевой угол смачивания (или косинус краевого угла) является характеристикой способности жидкости смачивать твердую или жидкую поверхность. В таблице 1 представлены возможные случаи поведения жидкости на твердой или жидкой поверхности. Смачивание или несмачивание зависит от соотношения работы когезии и работы адгезии.
Таблица 1. Критерии смачивания, несмачивания и растекания
жидкостей
Несмачивание жидкостью
поверхности
900 (тупой угол) Смачивание жидкостью поверхности
900 (острый угол)
Смачивание и несмачивание являются причиной капиллярных явлений.
Капиллярные явления наблюдаются в капиллярах и капиллярно-пористых телах, содержащих жидкость. Капиллярные явления заключаются в поднятии или опускании уровня жидкости в капиллярах по сравнению с уровнем жидкости в сосуде, в который опущены эти капилляры (рис. 10 и 11).
1266825114300h00h
Рис. 10. Капиллярное поднятие жидкости ( 900)
1460500120015h00h
Рис. 11. Отрицательное капиллярное поднятие жидкости ( 900)
Капиллярное поднятие или опускание жидкостей связано с возникновением кривизны поверхности (выпуклый или вогнутый мениск). В свою очередь появление кривизны поверхности связано с процессами смачивания ( 900, вогнутый мениск) или несмачивания ( 900, выпуклый мениск) жидкостями стенок капилляров.
Растекание жидкостей по поверхности
Особо остановимся на предельном случае смачивания – растекании жидкости по поверхности, которое наблюдается при = 00, когда работа адгезии равна работе когезии (Wa = Wк). Очевидно, что чем больше преобладает работа адгезии над работой когезии, тем лучше будет растекаться жидкость по поверхности. Величина
f = Wa – Wк
называется коэффициентом растекания или критерием Гаркинса.
Если f 0 – жидкость растекается (Wa Wк)
Если f 0 – жидкость не растекается (Wa Wк)
Процесс растекания зависит от соотношения работ адгезии и когезии, а те в свою очередь определяются величинами поверхностного натяжения на границе раздела разных фаз.
Гидрофильные и гидрофобные поверхности
Рассмотрим такие важные понятия, как гидрофильные и гидрофобные поверхности.
Если смачивающей жидкостью является вода, то поверхность, на которой вода образует острый краевой угол, называется гидрофильной (гидро – вода, филио - любить). Поверхность, на которой вода образует тупой краевой угол, называется гидрофобной (фибио – не любить). Вода на таких поверхностях собирается шариками.
Гидрофильной поверхностью обладают: металлы, соли, оксиды, кварц, стекло. Такие поверхности хорошо смачиваются водой.
Гидрофобная поверхность у парафинов, углей, сажи, у полимерных материалов, лакокрасочных покрытий, у листьев деревьев, покровов насекомых, меха животных. Такие поверхности не смачиваются водой, она с них стекает.
Гидрофильность и гидрофобность поверхностей имеет огромное значение в природе, в технологических процессах. Процессами гидрофилизации и гидрофобизации поверхности можно управлять, нанося специальные покрытия (лакокрасочные) или обрабатывая поверхность растворами поверхностно - активных веществ.
В табл. 2 приведены значения краевых углов смачивания для некоторых веществ.
Таблица 2. Краевые углы смачивания некоторых веществ водой
Вещество Вещество Вещество
Кварц 00 Графит 550 Парафин 1060
Малахит 170 Тальк 690 Фторопласт 1080
Из веществ, приведенных в таблице, гидрофильными свойствами обладают: кварц, малахит, графит, тальк, а гидрофобными – парафин и фторопласт.Капиллярным поднятием жидкостей объясняется ряд известных явлений и процессов. Пропитка бумаги, тканей обусловлена капиллярным поднятием жидкостей в порах; водонепроницаемость тканей обеспечивается их гидрофобностью и как следствие – отрицательным капиллярным поднятием; подъем воды из почвы по стволам растений происходит благодаря волокнистому строению древесины; капиллярными явлениями обусловлены процессы кровообращения в кровеносных сосудах; процессы адсорбции на мелкопористых сорбентах, которые сопровождаются капиллярной конденсацией. Подъем глубинных вод в грунтах и почвах обеспечивает влагой растительность. Для предотвращения высыхания почвы (испарения воды с поверхности) проводят рыхление (боронование) с целью разрушения капилляров и трещин, по которым поднимается влага.
Интересным примером проявления капиллярного давления может служить возникновение капиллярной стягивающей силы между частицами, пластинками при наличии между ними прослойки жидкости с вогнутым мениском (при хорошем смачивании частиц жидкостью).
Например, сухой песок – сыпучее вещество. При небольшом увлажнении песок хорошо формуется, т.к. между частицами возникают капиллярные силы, стягивающие частицы. При сильном увлажнении песок расплывается, т.к. между частицами исчезает мениск, частицы со всех сторон окружены жидкостью.
Еще один пример капиллярного стягивания – это «прилипание» друг к другу стеклянных пластинок, между которыми находится очень тонкая прослойка воды (одна капля). Такие пластинки очень трудно оторвать друг от друга.
4.Влияние смачивания на промышленные и
природные процессы
Смачивание имеет большое значение для успешного проведения ряда важнейших технологических процессов. Например, в текстильной технологии хорошее смачивание волокна или тканей является важным условием для крашения, беления, расшлихтовки, пропитки, стирки и т.д. Смачивание соответствующими жидкостями металлов и неметаллических тел ускоряет и облегчает их механическую обработку ( резание, сверление, шлифовку, полировку). Пайка возможна только в том случае, если припой смачивает соединяемые детали. Это происходит, если силы притяжения между атомами припоя и металла больше, чем между атомами внутри самого припоя. Если капля припоя не смачивает поверхность, то она не способна затекать в узкие зазоры между соединяемыми материалами. При наличии загрязнений соединяемых поверхностей адгезия припоя ухудшается и могут образовываться несмачиваемые зоны, что снижает качество пайки. Бурение нефтяных скважин в горных породах также облегчается, если применять специальные бурильные растворы, содержащие смачиватели. На явлениях избирательного смачивания основано обогащение руд - флотация. Смачивание имеет огромное значение и в процессах реставрационно-профилактической обработки фильмовых материалов водными растворами, особенно если эти процессы должны протекать в течение короткого времени.
Смачивание влияет также на степень перегрева и переохлаждения при фазовых переходах (кипении, конденсации, плавлении, кристаллизации). Это связано с тем, что работа гетерогенного образования критического зародыша новой фазы максимальна при полном несмачивании, а при полном смачивании она минимальна. В частности, для предотвращения образования тромбов в кровеносных сосудах материалы для протезирования сосудов не должны смачиваться кровью.
Как уже рассматривалось ранее, смачиваемость зависит от микроструктуры поверхности. На этом основан так называемый «эффект лотоса». Лотос издревле почитается на Востоке как символ чистоты - его лепестки всегда остаются сухими и белоснежными. Загадка лотоса объяснилась сравнительно недавно. Оказалось, что дело не только в воскоподобном (гидрофобном) покрытии его лепестков, но и в особой микроструктуре их поверхности. Рельеф лепестка лотоса образован набором холмов и впадин микронного размера, покрытых отдельными «крупинками» гидрофобного вещества диаметром в несколько нанометров. Попав на такую поверхность, капля принимает форму, близкую к сферической, и легко скатывается с нее, унося с собой частицы загрязнений. Похожим образом устроены крылья бабочек и многих других насекомых, для которых защита от избыточной воды жизненно необходима: намокнув, они потеряли бы способность летать.
«Эффект лотоса» используется в промышленности для создания супергидрофобных самоочищающихся покрытий и красок, на которых краевой угол воды превышает 1500. Например, ученые из Массачусетского технологического института (США) недавно разработали «сверхводоотталкивающее» покрытие, состоящее из нескольких слоев микропористой пленки полиэлектролита и кремниевых наночастиц. Ученые признались, что их вдохновил «эффект лотоса».
Рассмотрим роль смачивания в образовании “жидкой линзы”. Поместим каплю воды на супергидрофобную поверхность - она образует почти идеальный шарик. Затем приложим между поверхностью и каплей напряжение - капля как бы прижмется к поверхности, краевой угол уменьшится. Плавно увеличивая и уменьшая напряжение, можно заставить каплю «танцевать». Поскольку вода преломляет свет иначе, чем воздух, то лежащая капля - это своего рода линза, только жидкая. Работа жидкой линзы очень напоминает человеческий глаз, который фокусируется путем изменения кривизны хрусталика.
В последние годы «жидкими линзами» заинтересовались сразу несколько крупных компаний, занимающихся информационными технологиями и видеотехникой. В частности, компания «Philips» анонсировала оптическую систему FluidFocus, работающую по принципу «жидкой линзы». Устройство состоит из небольшой трубки с прозрачными торцами, заполненной двумя несмешивающимися жидкостями с различными коэффициентами преломления. Одна представляет собой проводящий электричество водный раствор, а другая - масло, изолятор. Внутренняя поверхность трубки и один из торцов покрыты гидрофобным покрытием, в результате чего водный раствор, скапливающийся у противоположного торца, принимает полусферическую форму. Фокусное расстояние (кривизна линзы) изменяется увеличением или уменьшением электрического потенциала, приложенного к гидрофобному покрытию. При этом поверхность может стать совершенно плоской и даже вогнутой - линза из собирающей превратится в рассеивающую или наоборот. Размеры опытного образца FluidFocus составили всего несколько миллиметров, его фокусное расстояние меняется от 5 сантиметров до бесконечности, и, что особенно важно, скорость переключения между двумя крайними режимами работы менее 10 миллисекунд, а энергопотребление крайне мало. Последнее обстоятельство открывает возможности применения «жидких линз» в портативных устройствах, работающих от аккумуляторов: цифровых фотоаппаратах, встроенных в мобильный телефон видеокамерах и прочей технике.
Заключение
Несмотря на весьма давнюю (более 150 лет) историю исследований, интерес к изучению законов смачивания непрерывно растет. Важнейшим стимулом здесь, как и в других областях современной науки, являются потребности практики. Изучается влияние различных процессов (адсорбции на различных границах раздела фаз, испарения) и факторов (строения индивидуальных и смешанных адсорбционных слоев ПАВ и химически привитых модификаторов) на смачивание и капиллярное течение. Благодаря развитию новых теоретических представлений и методов экспериментальных исследований сведения о закономерностях смачивания твердых тел значительно расширились и углубились.
Процессу смачивания почти всегда сопутствует гистерезис краевых углов. При внешней простоте гистерезиса его изучение достаточно сложно, так как различие краевых углов могут вызывать разные причины и часто они действуют одновременно. Основными причинами возникновения гистерезиса являются шероховатость и гетерогенность поверхности. Закономерности гистерезиса смачивания используются во многих технологиях. Примеры - флотационное обогащение руд, нефтедобыча, отмывание загрязнений. Измерения гистерезисных углов дают ценную информацию о поверхностных свойствах твердых тел, полимерных и белковых гелей и студней.
Процесс смачивания можно регулировать. Наиболее универсальный метод регулирования смачивания состоит в использовании поверхностно-активных веществ
Список литературы
Иванов А.В., Сумм БД. // Вестник Московского ун-та. Сер. 2. Химия. 2004. Т. 45. № 2. С. 139.
Гильман А.Б., Драчев А.И., Венгерская Л.Э. и др. // Химия высоких энергий. 2003. Т. 37. № 6. С. 475.
Ляхович А.М.,Дорфман A.M., Повстугар В.И. // Известия АН. Сер. физ. 2002. № 9. С. J 054.
Шашки на О.Р., Богданова С.А., Барабанов В.П. и др. // Структура и динамика молекулярных систем. 2003. Вып. 10. Ч. 3. С. 61.
Емельяненко A.M. // Физикохимия поверхности и защита материалов. 2008. Т. 44. № 5. С. 453.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Заполните форму и узнайте цену на индивидуальную работу!