Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Катализ - каталитические взаимодействия

Тип Реферат
Предмет Физика

ID (номер) заказа
36367

200 руб.

Просмотров
992
Размер файла
129.95 Кб
Поделиться

Ознакомительный фрагмент работы:

СОДЕРЖАНИЕ
Тема: «Катализ - каталитические взаимодействия».
Введение
Катализ – изменение скорости химической реакции в присутствии катализаторов. Самые простые научные сведения о катализе были известны уже к началу XIX в. Знаменитый русский химик, академик К. С. Кирхгоф, открыл в 1811 г. каталитическое превращение крахмала в сахар под действием разбавленных кислот. Эта реакция лежит в основе крахмалопаточного производства. А в 1814 г. он открыл фермент – амилазу, и им же было установлено, что эту реакцию может катализировать диастаза из ячменного солода, чем было положено начало изучению биологических катализаторов – ферментов. Четыре года спустя Г. Деви открыл способность паров спирта и эфира окисляться кислородом на платине. В 1822 г. И. Деберейнер установил, что при обычной температуре можно соединять водород и кислород на платине. Вскоре эти и многие другие открытия привели к установлению существования явлений, в 1833 г. названных Э. Митчерлихом контактными, а в 1835 г. И. Берцелиусом – каталитическими. В органической химии успехи катализа связаны с развитием теории строения органических соединений Бутлерова.
Большую роль сыграли каталитические методы в развитии процессов органического синтеза. Следующим направлением использования катализатора является каталитическая очистка технологических газов, а также очистка сточных вод, загрязненных органическими веществами. В живой природе вся система управления жизненными процессами в организмах основана на катализе. Такие процессы, как брожение, дыхание, пищеварение, синтез белков и других соединений и т. п. осуществляется с помощью ферментов, называемых энзимами.
Катализ является рабочей лошадкой химических превращений в промышленности. Примерно 85-90 % продукции химической промышленности производится в каталитических процессах. Катализаторы незаменимы в:
- производстве топлива для транспорта, которое осуществляется примерно на 440 нефтеперерабатывающих заводах во всем мире;
- крупнотоннажной и тонкой химических технологиях во всех отраслях химической индустрии;
- предотвращении загрязнения среды через создание безотходных технологий (исключение производства нежелательных субпродуктов);
- снижении уровня загрязнения сточных вод, промышленных выбросов и выхлопных газов транспорта.
Для ученых и инженеров катализ  чрезвычайно интригующая междисциплинарная область деятельности.
Определение катализа
Катализ, ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Каталитические процессы играют огромную роль в нашей жизни. Биологические катализаторы, называемые ферментами, участвуют в регуляции биохимических процессов. Без катализаторов не могли бы протекать многие промышленные процессы.
Важнейшее свойство катализаторов – селективность, т.е. способность увеличивать скорость лишь определенных химических реакций из многих возможных. Это позволяет осуществлять реакции, протекающие в обычных условиях слишком медленно, чтобы им можно было найти практическое применение, и обеспечивает образование нужных продуктов.
Применение катализаторов способствовало бурному развитию химической промышленности. Они широко используются при переработке нефти, получении различных продуктов, создании новых материалов (например, пластмасс), нередко более дешевых, чем применявшиеся прежде. Примерно 90% объема современного химического производства основано на каталитических процессах. Особую роль играют каталитические процессы в охране окружающей среды.
В 1835 шведский химик Й.Берцелиус установил, что в присутствии определенных веществ, скорость некоторых химических реакций существенно возрастает. Для таких веществ он ввел термин «катализатор» (от греч. katalysis – расслабление). Как считал Берцелиус, катализаторы обладают особой способностью ослаблять связи между атомами в молекулах, участвующих в реакции, облегчая, таким образом, их взаимодействие. Большой вклад в развитие представлений о работе катализаторов внес немецкий физикохимик В.Оствальд, который в 1880 дал определение катализатора как вещества, которое изменяет скорость реакции.
Согласно современным представлениям, катализатор образует комплекс с реагирующими молекулами, стабилизируемый химическими связями. После перегруппировки этот комплекс диссоциирует с высвобождением продуктов и катализатора. Для мономолекулярной реакции превращения молекулы X в Y весь этот процесс можно представить в виде
X + Кат.. X-Кат. . Y-Кат. . Y + Кат.
Высвободившийся катализатор вновь связывается с X, и весь цикл многократно повторяется, обеспечивая образование больших количеств продукта – вещества Y.
Многие вещества при обычных условиях не вступают в химическую реакцию друг с другом. Так, водород и оксид углерода при комнатной температуре не взаимодействуют между собой, поскольку связь между атомами в молекуле H2 достаточно прочная и не разрывается при атаке молекулой CO. Катализатор сближает молекулы H2 и CO, образуя с ними связи. После перегруппировки комплекс катализатор – реагенты диссоциирует с образованием продукта, содержащего атомы C, H и O.
Нередко при взаимодействии одних и тех же веществ образуются разные продукты. Катализатор может направить процесс по пути, наиболее благоприятному для образования определенного продукта. Рассмотрим реакцию между CO и H2. В присутствии медьсодержащего катализатора практически единственным продуктом реакции является метанол:
Вначале молекулы СО и Н2 адсорбируются на поверхности катализатора. Затем молекулы СО образуют с катализатором химические связи (происходит хемосорбция), оставаясь в недиссоциированной форме. Молекулы водорода также хемосорбируются на поверхности катализатора, но при этом диссоциируют. В результате перегруппировки образуется переходный комплекс Н-Кат.-CH2OH. После присоединения атома H комплекс распадается с высвобождением CH3OH и катализатора.
В присутствии никелевого катализатора как СО, так и Н2 хемосорбируются на поверхности в диссоциированной форме, и образуется комплекс Кат.-СН3. Конечными продуктами реакции являются СН4 и Н2О:
Большинство каталитических реакций проводят при определенных давлении и температуре, пропуская реакционную смесь, находящуюся в газообразном или жидком состоянии, через реактор, заполненный частицами катализатора. Для описания условий проведения реакции и характеристики продуктов используются следующие понятия. Объемная скорость – объем газа или жидкости, проходящий через единицу объема катализатора в единицу времени. Каталитическая активность – количество реагентов, превращенных катализатором в продукты в единицу времени. Конверсия – доля вещества, превращенного в данной реакции. Селективность – отношение количества определенного продукта к суммарному количеству продуктов (обычно выражается в процентах). Выход – отношение количества данного продукта к количеству исходного материала (обычно выражается в процентах). Производительность – количество продуктов реакции, образующихся в единице объема в единицу времени.
Механизм каталитического взаимодействия.
Виды катализаторов
Различают гомогенный и гетерогенный катализ. При однородном (гомогенном) катализе катализатор и реагенты образуют однородную систему.
Пример:
представляют однородную газовую фазу.
Границы раздела между катализатором и реагентом отсутствуют. При гетерогенном – катализатор и реагирующие вещества находятся в разных фазах и отделены границей раздела. При этом катализатором является твердое тело, а реагенты находятся либо в газовой, либо в жидкой фазе. Пример:
N2(г) + 3H2(г) > 2NH3(г).
Существует еще микрогетерогенный катализ, при котором катализатор находится в коллоидном или в высокомолекулярном состоянии.
Пример – биокаталитический процесс, катализаторами служат ферменты (энзимы). Есть еще автокаталитические процессы, когда катализатор – продукт самой реакции.
Рассмотрим механизм каталитического взаимодействия в общих чертах. Пусть дана некая химическая реакция
А + В = АВ.
Без катализатора она протекает медленно. Как же она будет протекать с катализатором, по какой схеме? Ответим на данные вопросы. Катализатор взаимодействует с одним из реагентов, образуя промежуточные соединения по реакции А + К = АК.
Затем уже это соединение реагирует с другим исходным веществом, при этом образуется продукт реакции АВ и выделяется еще катализатор. Напомним, катализатор – вещество, активно участвующее в химической реакции, но регенерирующееся (восстанавливающееся) после ее завершения, что мы и наблюдаем в ходе реакции
АК + В = АВ + К.
Главное преимущество катализатора в том, что он уменьшает энергию активации, увеличивая скорость реакции, но не влияет на термодинамические величины: U, H, S, G, F.
Принцип действия катализаторов3.1 Энергетика Любая химическая реакция может протекать лишь при условии, что реагенты преодолеют энергетический барьер, а для этого они должны приобрести определенную энергию. Каталитическая реакция X (r) Y состоит из ряда последовательных стадий. Для протекания каждой из них необходима энергия E, называемая энергией активации. Изменение энергии вдоль координаты реакции представлено на рис. 1.
Рис. 1. Изменение энергии при каталитическом и «тепловом» путях протекания реакции.
Рассмотрим сначала некаталитический, «тепловой» путь. Чтобы реакция смогла осуществиться, потенциальная энергия молекул X должна превысить энергетический барьер Eт. Каталитическая же реакция состоит из трех стадий. Первая – образование комплекса Х-Кат. (хемосорбция), энергия активации которой равна Еадс. Вторая стадия – перегруппировка Х-Кат.  Y-Кат. с энергией активации Екат, и наконец, третья – десорбция с энергией активации Едес; Еадс, Екат и Едес много меньше Ет. Поскольку скорость реакции экспоненциально зависит от энергии активации, каталитическая реакция протекает значительно быстрее тепловой при данной температуре.
Катализатор можно уподобить инструктору-проводнику, который ведет альпинистов (реагирующие молекулы) через горный хребет. Он проводит одну группу через перевал и затем возвращается за следующей. Путь через перевал лежит значительно ниже того, который лежит через вершину (тепловой канал реакции), и группа совершает переход быстрее, чем без проводника (катализатора). Возможно даже, что самостоятельно группа вообще не смогла бы преодолеть хребет.
3.2 Теории катализа Для объяснения механизма каталитических реакций были предложены три группы теорий: геометрические, электронные и химическая. В геометрических теориях основное внимание обращено на соответствие между геометрической конфигурацией атомов активных центров катализатора и атомов той части реагирующих молекул, которая ответственна за связывание с катализатором.
Электронные теории исходят из представления, что хемосорбция обусловливается электронным взаимодействием, связанным с переносом заряда, т.е. эти теории связывают каталитическую активность с электронными свойствами катализатора. Химическая теория рассматривает катализатор как химическое соединение с характерными свойствами, которое образует химические связи с реагентами, в результате чего формируется нестабильный переходный комплекс.
После распада комплекса с высвобождением продуктов катализатор возвращается в исходное состояние. Последняя теория считается сейчас наиболее адекватной.
На молекулярном уровне каталитическую газофазную реакцию можно представить следующим образом. Одна реагирующая молекула связывается с активным центром катализатора, а другая взаимодействует с ней, находясь непосредственно в газовой фазе. Возможен и альтернативный механизм: реагирующие молекулы адсорбируются на соседних активных центрах катализатора, а потом взаимодействуют друг с другом. По-видимому, именно таким образом протекает большинство каталитических реакций.
Другая концепция предполагает, что существует связь между пространственным расположением атомов на поверхности катализатора и его каталитической активностью. Скорость одних каталитических процессов, в том числе многих реакций гидрирования, не зависит от взаимного расположения каталитически активных атомов на поверхности; скорость других, напротив, существенно изменяется при изменении пространственной конфигурации поверхностных атомов. В качестве примера можно привести изомеризацию неопентана в изопентан и одновременный крекинг последнего до изобутана и метана на поверхности катализатора Pt-Al2O3.
Технологические аспекты применения катализаторовСовременные технологии невозможно представить без применения катализаторов. Каталитические реакции могут протекать при температурах до 650С и давлениях 100 атм и более. Это заставляет по-новому решать проблемы, связанные с контактированием между газообразными и твердыми веществами и с переносом частиц катализатора. Чтобы процесс был эффективным, при его моделировании необходимо учитывать кинетические, термодинамические и гидродинамические аспекты. Здесь широко используются компьютерное моделирование, а также новые приборы и методы контроля за технологическими процессами.
В 1960 был достигнут значительный прогресс в производстве аммиака. Применение более активного катализатора позволило понизить температуру получения водорода при разложении водяного пара, благодаря чему удалось понизить давление и, следовательно, уменьшить производственные затраты, например за счет применения более дешевых центробежных компрессоров. В результате стоимость аммиака упала более чем вдвое, произошло колоссальное увеличение его производства, а в связи с этим – увеличение производства пищевых продуктов, поскольку аммиак – ценное удобрение.
4.1 Каталитический методЭтим методом превращают токсичные компоненты промышленных выбросов в вещества безвредные или менее вредные для окружающей среды путем введения в систему дополнительных веществ, называемых катализаторами. Каталитические методы основаны на взаимодействии удаляемых веществ с одним из компонентов, присутствующих в очищаемом газе, или со специально добавляемым в смесь веществом на твердых катализаторах. Действие катализаторов проявляется в промежуточном (поверхностном) химическом взаимодействии катализатора с реагирующими соединениями, в результате которого образуются промежуточные вещества и регенерированный катализатор.
Методы подбора катализаторов отличаются большим разнообразием, но все они базируются в основном на эмпирических или полуэмпирических способах. Об активности катализаторов судят по количеству продукта, получаемого с единицы объема катализатора, или по скорости каталитических процессов, при которых обеспечивается требуемая степень превращения.
Скорость каталитических процессов выражают общепринятым для всех химических реакций уравнением
ωk=kωCа1Cb2 ...,
где С1 С2 и т. д.- концентрации веществ, участвующих в реакции; kω - константа скорости реакции; a, b - порядок реакции по соответствующему компоненту.
Зависимость константы скорости реакции от температуры описывается законом Аррениуса: kω=ze-E/RT, где Т - абсолютная температура; R - газовая постоянная; Е - энергия активации; z - предэкспоненциальный множитель. Величины Е и z - постоянные, характерные для данной химической реакции и катализатора.
В большинстве случаев катализаторами могут быть металлы или их соединения (платина и металлы платинового ряда, оксиды меди и марганца и т. д.). Для осуществления каталитического процесса необходимы незначительные количества катализатора, расположенного таким образом, чтобы обеспечить максимальную поверхность контакта с газовым потоком. Катализаторы обычно выполняются в виде шаров, колец или проволоки, свитой в спираль. Катализатор может состоять из смеси неблагородных металлов с добавкой платины и палладия (сотые доли % к массе катализатора), нанесенных в виде активной пленки на нихромовую проволоку, свитую в спираль.
Объем катализаторной массы определяется исходя из максимальной скорости обезвреживания газа, которая в свою очередь зависит от природы и концентрации вредных веществ в отходящем газе, температуры и давления каталитического процесса и активности катализатора. Допустимая скорость обезвреживания находится в пределах 2000-60000 объемов газа на. объем каталитической массы в час. На катализаторах, разработанных в Дзержинском филиале НИИОГАЗа, при скорости обезвреживания 30000-60000 объемов обезвреживаемого газа на объем катализаторной массы в час и температуре 350-420°С практически полностью окисляются примеси этилена, пропилена, бутана, пропана, ацетальдегида, спиртов (метилового, этилового, пропилового, аллилового и др.), ацетона, этилацстона, бензола, толуола, ксилола, оксида углерода и др.
Существенное влияние на скорость и эффективность каталитического процесса оказывает температура газа. Для каждой реакции, протекающей в потоке газа, характерна так называемая минимальная температура начала реакции, ниже которой катализатор не проявляет активности. Температура начала реакции зависит от природы и концентрации улавливаемых вредностей, скорости потока и типа катализатора. С повышением температуры эффективность каталитического процесса увеличивается. Например, метан начинает окисляться на поверхности катализатора, состоящего из 60% диоксида марганца и 40% оксида меди, только при температуре 320°С, а 97%-ное реагирование наблюдается при t=450°С. Следует, однако, иметь в виду, что для каждого катализатора существует предельный температурный уровень. Повышение этого уровня приводит к снижению активности, а затем к разрушению катализатора.
Для поддержания необходимой температуры газа иногда к нему подмешивают (особенно в пусковой период) продукты сгорания от вспомогательной горелки, работающей на каком-либо высококалорийном топливе. На рис. 2 представлен каталитический реактор, предназначенный для окисления толуола, содержащегося в газовоздушных выбросах цехов окраски. Воздух, содержащий примеси толуола, подогревается в межтрубном пространстве теплообменника - рекуператора 1, откуда по переходным каналам он поступает в подогреватель 4. Продукты сгорания природного газа, сжигаемого в горелках 5, смешиваются с воздухом, повышая его температуру до 250-350°С, т. е. до уровня, обеспечивающего оптимальную скорость окисления толуола на поверхности катализатора. Процесс химического превращения происходит на поверхности катализатора 3, размещенного в контактном устройстве 2. В качестве катализатора применена природная марганцевая руда (пиромзит) в виде гранул размером 2-5 мм, промотированных азотнокислым палладием. В результате окисления толуола образуются нетоксичные продукты: оксид углерода и водяные пары (С7Н8+9О2->7СО2+4Н2О). Смесь воздуха и продуктов реакции при температуре 350-450°С направляется в рекуператор 1, где отдает тепло газовоздушному потоку, идущему на очистку, и затем через выходной патрубок выводится в атмосферу. Эффективность очистки такого реактора составляет 95-98% при расходе вспомогательного топлива (природного газа) 3,5-4,0 м3 на 1000 м3 очищаемого воздуха. Гидравлическое сопротивление реактора при номинальной нагрузке (800-900 м3/ч) не превышает 150-180 Па. Скорость процесса находится в пределах от 8000 до 10000 объемов на объем катализаторной массы в 1 ч.
Рис. 2. Каталитический реактор
В последние годы каталитические методы очистки нашли применение для нейтрализации выхлопных газов автомобилей. Для комплексной очистки выхлопных газов - окисления продуктов неполного сгорания и восстановления оксида азота -применяют двухступенчатый каталитический нейтрализатор (рис. 3). Установка состоит из последовательно соединенных восстановительного 2 и окислительного 4 катализаторов. Отработавшие газы через патрубок 1 поступают к восстановительному катализатору 2, на котором происходит нейтрализация оксидов азота по следующим реакциям:
ТЩ+СО-Ю1.2Т2+СЩ2ж ТЩ+Н2-Ю1.2Т2+Н2О
В качестве восстановительного катализатора применяют монельметалл (медноникелевый сплав) или катализатор из благородных металлов (например, платина на глиноземе). При объемной скорости порядка 100000 ч-1эффективность очистки по NO достигает 90% и выше.
Рис. 3 Двухступенчатый каталитический нейтрализатор
После восстановительного катализатора к отработавшим газам для создания окислительной среды через патрубок 3 подводится вторичный воздух. На окислительном катализаторе происходит нейтрализация продуктов неполного сгорания - оксида углерода и углеводородов:
СО+1.2Щ2-ЮСЩ2ж СчРн+(ч+н.4)Щ2-ЮчСЩ2+1.2Р2Щб
Для окислительных процессов применяют катализатор из благородных металлов или оксидов переходных металлов (медь, никель, хром и др.). Содержание оксида углерода в выхлопных газах автомобиля с нейтрализатором снижается почти в 10 раз, а углеводородов - ~ в 8 раз. Широкому применению каталитических нейтрализаторов препятствуют использование этилированного бензина, который содержит определенное количество свинца. Свинец дезактивирует катализаторы в течение 100-200 ч.
Для расчета каталитического реактора необходимы следующие параметры: объемный расход очищаемого газа Qг, м3/с; состав и концентрация примесей Св, мг/м3; тип катализатора; скорость обезвреживания газа ωк, 1/ч, и рекомендуемая температура перед слоем катализатора ТК. Минимальный объем Vк, м3, катализаторной массы определяют исходя из максимальной скорости обезвреживания газа Vк = Qг/ωк. Толщина слоя катализатора h, м, необходимая для достижения заданной степени очистки η, определяется по формуле
р=Т0ωр.(Ыэфβ)б
где Т0 =дт 1.1-η – число единиц переноса;
ωp=ω0-Tp/T0 1/Пк - скорость газа при рабочих условиях, м/с;
ω0 - линейная скорость потока газа при нормальных условиях (T0=273К и Р=101,3 кПа), отнесенная к полной фильтрующей поверхности (на практике обычно применяют
ω0= 0,5-1 м/с);
Пк - пористость слоя катализатора;
Sэф=Sудkф - эффективная удельная поверхность катализатора, м2/м3; 5удельная наружная поверхность катализатора, м2/м3;
Sуд - коэффициент формы зерна, учитывающий неравнодоступность всей поверхности зерна катализатора обдувающему потоку;
β - коэффициент массопередачи, отнесенный к единице поверхности катализатора, м/с.
Коэффициент массопередачи определяют в зависимости от режима течения газа:
Nuд=0,515Re0,35 Sc0,33 при Re=0,01 ÷ 20;
Nuд=0,725Re0,47 Sc 0,33 при Re=2 ÷ 30;
Nuд=0,395Re0,64 Sc0,33 при Re=30 ÷ 8000,
где Nuд=β dэ/D - диффузионный критерий Нуссельта;
Re=ω рdэ/ν - критерий Рейнольдса;
Sc = ν/D -критерий Шмидта (диффузионный критерий Прандтля);
ν - коэффициент кинематической вязкости газа при рабочих условиях, м2/с;
dэ - эквивалентный диаметр зерна катализатора, м;
D=D0(T/T0)1,8 - коэффициент диффузии улавливаемого газового компонента в воздухе, м2/с;
D0 - коэффициент диффузии при Т0=273 К и р0=101,3 кПа.
В задачу аэродинамического расчета входит определение гидравлического сопротивления слоя катализатора, которое находят по формуле
Δр/h=150(1-Пк)2/П3к μωρ/d2э+1,75 1-Пк/П3к рг ω2ρ/dэ
где μ - коэффициент динамической вязкости газа при рабочих условиях, Н•с/м2.
4.2 Термический методДостаточно большое развитие в отечественной практике нейтрализации вредных примесей, содержащихся в вентиляционных и других выбросах, имеет высокотемпературное дожигание (термическая нейтрализация). Для осуществления дожигании(реакций окисления) необходимо поддержание высоких температур очищаемого газа и наличие достаточного количества кислорода. Выбор схемы дожигания зависит от температуры и количества выбросов, а также от содержания в них вредных примесей, кислорода и других компонентов. Если выбросные газы имеют высокую температуру, процесс дожигания происходит в камере с подмешиванием свежего воздуха. Так, например, происходит дожигание оксида углерода в газах, удаляемых системой вентиляции от электродуговых плавильных печей, дожигание продуктов неполного сгорания (СО и СХНУ) автомобильного двигателя непосредственно на выходе из цилиндров в условиях добавки избыточного воздуха.
Если температура выбросов недостаточна для протекания окислительных процессов, то в потоке отходящих газов сжигают природный или какой-либо другой высококалорийный газ. Одним из простейших устройств, используемых для огневого обезвреживания технологических и вентиляционных выбросов, является горелка, предназначенная для сжигания природного газа (рис. 3). Обезвреживаемые выбросы в этом случае подаются в канал 1, где они омывают горелку 2. Из коллектора 3 газ, служащий топливом, поступает в сопла, при истечении из которых инжектируется первичный воздух из окружающей среды. Горение смеси газа с первичным воздухом осуществляется в V-образной полости коллектора. Процесс догорания происходит на выходе из полости, где хвостовая часть факела контактирует с обезвреживаемыми выбросами при их истечении из кольцевой щели между корпусом горелки и коллектора.
Рис. 3 Установка для огневого обезвреживания технологических и вентиляционных выбросов
Институтом газа АН УССР разработана и успешно прошла промышленные испытания установка очистки газовых выбросов лакокрасочного производства. Установка представляет собой циклонную топку (рис. 4), скомпонованную с газовой горелкой и камерой разбавления газов после их очистки. Воздух, загрязненный токсическими примесями органических веществ (толуол ксилол и др.), поступает в вихревую двух горелку 2 по каналу 6 и непосредственно во внутреннюю полость печи 4 по тангенциальным каналам 5. Природный газ подается в горелку 2 по трубе 3. Время пребывания в полости (не менее 0,5 с) и контакт их с раскаленными стенками камеры обеспечивают полноту их сгорания. Атмосферный воздух подается по центральной трубе 1 горелки 2 только при обезвреживании выбросов, содержащих менее 15% кислорода. Запуск установки, вывод на рабочий режим и его поддержание осуществляются с помощью блока автоматического управления и регулирования установки.
Рис. 4 Установка очистки газообразных выбросов лакокрасочного производства
Системы огневого обезвреживания обеспечивают эффективность очистки 90-99%, если время пребывания вредностей в высокотемпературной зоне не менее 0,5 с и температура обезвреживаемых газов, содержащих углеводороды, не менее 500-650°С, а содержащих оксид углерода - 660-750° С.
ЗаключениеКатализ - процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами.
Катализаторы - вещества, изменяющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.
Масштабы каталитических процессов в промышленности увеличиваются с каждым годом. Все более широкое применение находят катализаторы для нейтрализации веществ, загрязняющих окружающую среду. Возрастает роль катализаторов в производстве углеводородов и кислородсодержащих синтетических топлив из газа и угля. Весьма перспективным представляется создание топливных элементов для экономичного преобразования энергии топлива в электрическую энергию.
Новые концепции катализа позволят получать полимерные материалы и другие продукты, обладающие многими ценными свойствами, усовершенствовать методы получения энергии, увеличить производство пищевых продуктов, в частности путем синтеза белков из алканов и аммиака с помощью микроорганизмов. Возможно, удастся разработать генно-инженерные способы получения ферментов и металлоорганических соединений, приближающихся по своей каталитической активности и селективности к природным биологическим катализаторам.
Список литературы
Байрамов В. М. Химическая кинетика и катализ: Примеры и задачи с решениями Учеб. пособие для студ. высш. учебных заведений - М.: Издательский центр «Академия», 2003.
Ганкин В.Ю., Ганкин Ю.В. Новая общая теория катализа. Л., 1991.
Каталитические процессы в нефтепереработке. Суханов В.П., «Химия», 2003.
Колесников И. М. Катализ и производство катализаторов. - М.: Техника, 2004.
Токабе К. Катализаторы и каталитические процессы. М., 1993.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 769 оценок star star star star star
среднее 4.9 из 5
Томский политехнический университет
Быстро, качественно, недорого. Все работы зачли и это главное. Спасибо.
star star star star star
МТУ
Отправила денежку заранее, так как была довольна, надеюсь, что мой учитель будет в восторг...
star star star star star
МГУПП
Доброжелательный человек, быстро понимает суть поставленной задачи, всё сделали досрочно. ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решить 2 задачи по прикладной механике

Решение задач, Прикладная механика

Срок сдачи к 17 дек.

только что

Тема облачные технологии в образовании

Реферат, Цифровая грамотность

Срок сдачи к 15 дек.

только что

Ответить на билет развернуто

Ответы на билеты, Теория Судовой Электротехники

Срок сдачи к 15 дек.

1 минуту назад

Задание в прикрепленном файте. Вариант 2.

Решение задач, Международное частное право

Срок сдачи к 22 дек.

1 минуту назад

Сделать контрольную работу

Контрольная, Микроэкономика

Срок сдачи к 25 дек.

2 минуты назад

Решить 6 задач и сделать схемы

Контрольная, Метрология, стандартизация и сертификация

Срок сдачи к 25 дек.

2 минуты назад

Отчет по практике

Отчет по практике, Экономика и бухгалтерский учет

Срок сдачи к 25 дек.

2 минуты назад

Выполнить задания

Другое, Информатика

Срок сдачи к 18 дек.

3 минуты назад

Без заголовка

Реферат, Реферат по госту

Срок сдачи к 17 дек.

3 минуты назад
3 минуты назад

Дневник и Отчет

Отчет по практике, Общие по юристпуденции

Срок сдачи к 23 дек.

3 минуты назад

Решить 3 задачи "Физика атома и атомного ядра"

Решение задач, Физика, Вуз

Срок сдачи к 18 дек.

4 минуты назад

Оценивание сложных систем в условиях риска и неопределенности

Лабораторная, Теория информационных процессов и систем

Срок сдачи к 16 дек.

6 минут назад

Разработать базу данных «Городские мероприятия»

Курсовая, База данных

Срок сдачи к 19 дек.

7 минут назад

Экзамен Билет № 12 (ответить на 4 вопроса и решить одну задачу)

Другое, Пожарная тактика, пожарная безопасность

Срок сдачи к 2 февр.

8 минут назад

Пластинчатые теплообменики

Диплом, Теплотехника

Срок сдачи к 18 дек.

9 минут назад

сделать курсовой по тмм.

Курсовая, Теория механизмов и машин (ТММ), детали машин, машиностроение

Срок сдачи к 26 дек.

10 минут назад

Курсовая

Курсовая, основы технологии машиностроения

Срок сдачи к 25 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно
    Введите ваш e-mail
    Файл с работой придёт вам на почту после оплаты заказа
    Успешно!
    Работа доступна для скачивания 🤗.