это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
3682755
Ознакомительный фрагмент работы:
Гидролиз – это начальная стадия пищеварения. Высокомолекулярные вещества (белки, жиры, полисахариды и др.) подвергаются ферментативному гидролизу с образованием низкомолекулярных соединений (соответственно, аминокислот, жирных кислот и глицерина, глюкозы и др.), так как высасываться в кишечнике способны только относительно небольшие молекулы.Без этого процесса не было бы возможным усвоение пищевых продуктов, так как высасываться в кишечнике способны только относительно небольшие молекулы. Так, например, усвоение полисахаридов и дисахаридов становится возможным лишь после полного их гидролиза ферментами до моносахаридов. Точно так же белки и липиды гидролизуются до веществ, которые лишь потом могут усваиваться.1.2 Биохимические процессыГуморальные механизмы регуляции в организме осуществляются с помощью химических веществ, которые образуются в процессе различных биохимических реакций.Биохимические процессы в организме основываются на молекулярном строении вещества, атомы которого соединены разными связями. При этом атомы одних веществ несут на себе положительный заряд, другие – отрицательный. При определенных условиях, делающих возможным течение химических реакций, молекулы веществ обмениваются своими составляющими (атомами или ионами). В результате комбинации атомов и молекул образуются тысячи новых химических веществ. При этом может создаться впечатление, что вещества в клетке находятся в относительном покое. Однако молекулы веществ, подобно персонажам какого-нибудь светского бала, перемещаются в заданных направлениях, периодически обмениваясь между собой партнерами. При рассмотрении функционирования клетки и ее составляющих (мембраны, цитоплазмы, органелл, ядра), в том числе генетического аппарата с биохимической точки зрения все происходящие в них процессы сводятся к разрыву одних химических связей и образованию других. Это дает возможность клетке поддерживать свою жизнедеятельность получая энергию, необходимую для поддержания подсистемы жизнеобеспечения, и выполняя специфические функции. Биохимические процессы являются основой обмена веществ.Обмен веществ обеспечивает самосохранение, рост, развитие и самовоспроизведение клеток организма.Питательные вещества, поступающие в клетку через один из ее функциональных входов, превращаются в вещества, необходимые для поддержания жизнедеятельности клетки и выполнения ею специфических функций. Остаточные продукты обмена выводятся через выходы системы (рисунок 1).Рисунок 1 – Системная модель клетки. Общие входы и выходыКонечной целью всех биохимических реакций, протекающих в организме, является выполнение двух основных функций. Первая из них – обеспечение постоянства внутренней среды (гомеостаза), непосредственное поддержание стабильности «подсистемы жизнеобеспечения». Вторая – выполнение специальных функций, заключающихся в реагировании на определенные внешние воздействия (например, проведение нервного импульса нейроном, выработка гормона, перенос кислорода эритроцитом, сокращение мышечной клетки) [2].Обе эти задачи решаются с использованием механизма обратной связи, который описан в предыдущем разделе. Его суть состоит в том, что клетка помнит (часто на генетическом уровне) нормальное значение параметра и меняет значение текущего параметра до тех пор, пока оно не достигнет нормального. В этом смысле часто нельзя сказать, когда и где начался биохимический процесс. Можно назвать только параметр, который регулируется, и определить его нормальное значение. Как же реализуется обмен веществ?Для того чтобы вещество поступило к клеткам, оно должно сначала попасть в кровь. Только после этого, преодолев ряд внутренних барьеров, оно сможет дойти до цели, связаться с клетками-мишенями, вызвать нужные изменения в функционировании тканей, органов и систем (что и является проявлением его биологического действия) и, наконец, подвергнувшись превращениям ( HYPERLINK "https://www.rlsnet.ru/books_book_id_2_page_308.htm" \l "bm134" биотрансформации), или в неизмененном виде покинуть организм. При этом, как правило, происходит выделение энергии, в некоторых случаях – ее поглощение.Какими путями питательные вещества могут попадать в кровоток? Из желудочно-кишечного тракта питательные вещества проникают в кровь, которая переносит их по организму и доставляет в различные ткани органов и систем. Этот процесс обозначают термином всасывание (абсорбция). При поступлении белки, углеводы и липиды преобразуются в желудочно-кишечном тракте при участии активных ферментов, которые выделяются железами желудка, кишечника, поджелудочной железой и поступают с желчью. При всасывании вещества проходят через клеточные мембраны, играющие основную роль в процессах транспорта веществ. Именно их ионные каналы и поры («ворота» клетки структурно отражают понятие функциональных входов и выходов, участвующих в выполнении основных задач клетки [1].В дальнейшем из кровяного русла питательные вещества проникают в ткани, где подвергаются различным биохимическим процессам, в ходе которых превращаются в необходимые для клетки формы химических соединений. Графическое изображение процессов представлено на рисунке 2. Стоит обратить внимание, что на схеме не показана энергетическая сторона обмена – высвобождение, запасание и использование энергии. Более подробно эти процессы будут рассмотрены в этом разделе несколько позже.Рисунок 2 – Течение биохимических процессов в клетки. Схема обмена веществПо рисунку можно проследить последовательность этапов обмена веществ в клетке. Источниками материалов для обновления структур и энергообеспечения служат пищевые продукты, в составе которых организм получает углеводы, липиды, белки, некоторые биологически активные соединения (например, витамины) и минеральные вещества. Исходные соединения поступают в клетку не в готовом виде, а в виде «заготовок» из питательных веществ, которые она, по мере необходимости, перерабатывает для своих нужд и нужд организма. Изготовление «заготовок» происходит в процессе пищеварения, когда пища в желудочно-кишечном тракте подвергается расщеплению: белки – до аминокислот, углеводы – до моносахаридов (глюкозы и других соединений), жиры – до жирных кислот и моноглицеридов. Низкомолекулярные биологически активные и минеральные вещества всасываются во внутреннюю среду преимущественно без какой-либо предварительной химической трансформации. Химические соединения с током крови поступают к клеткам, где включаются в процессы синтеза (образование специфических белков, углеводов, липидов и регуляторных соединений для клетки) процессы окислительно-восстановительных реакций, в ходе которых высвобождается энергия химических связей. Следующий это этап, на котором питательные вещества подвергаются дальнейшему расщеплению и/или HYPERLINK "https://www.rlsnet.ru/books_book_id_2_page_308.htm" \l "bm134" биотрансформации с целью получения в процессе биосинтеза собственных веществ. Основными реакциями, которые при этом протекают, являются окисление, восстановление, отщепление, гидролиз, синтез.Полученные соединения либо сразу расходуются «на строительные, ремонтные и хозяйственные нужды» клетки, либо аккумулируются в ней для последующего использования. Запасаются главным образом высокоэнергетические соединения – жиры, глюкоза в виде полимера (гликогена), которые при расщеплении высвобождают большое количество энергии. Другие соединения, синтезированные «на экспорт» (гормоны, медиаторы и другие) выделяются (секретируются) за пределы клетки с целью коммуникации с соседними или отдаленно расположенными клетками.Например, оптимальная концентрация белков в клетке обеспечивается их синтезом из имеющихся в клетке аминокислот «по мере необходимости». Реакции биосинтеза белка «запускаются» по механизму обратной связи, о котором рассказывалось в предыдущем разделе. Это касается в первую очередь выработки гормонов, медиаторов и других сигнальных молекул. Синтез белка на нужды самой клетки регулируется иначе – без включения механизмов гуморальной и нервной регуляции. Вероятно, клетка каким-то образом ощущает нехватку определенного белка (например, компонента клеточной мембраны), сравнивает с генетически запрограммированной должной величиной, и это становится пусковым моментом для его выработки. При рассмотрении механизмов биохимических процессов, протекающих в клетке, и их механизмов возникает много вопросов. Что заставляет клетку вырабатывать определенный белок? Как образуется такое многообразие белковых молекул? Давайте попробуем проследить на следующем примере.Предположим, мы съели шоколадку. Не углубляясь в последствия этого опрометчивого шага, скажем, что после такой углеводной нагрузки клеткам срочно потребуется переработать углеводы. «Нужен инсулин!» – кричат клетки, и мозг посылает указание бета-клеткам поджелудочной железы: «Прошение удовлетворить. Выработать инсулин!» Дальше начинается самое интересное. Как клетки вырабатывают белок, в частности инсулин?Белки, согласно определению, – это сложные высокомолекулярные вещества, состоящие из аминокислот, которые, в свою очередь, являются органическими кислотами, содержащими одну или более аминогрупп. Всего аминокислот 20 (представим их бусинами разных цветов), а белки – это бусы, собранные в нужном порядке. Сколько же число белковых молекул (бус) можно составить, при условии, что количество аминокислот (бусин) в одной белковой цепи может достигать нескольких сотен! Это определяет колоссальное разнообразие белков.Основной процесс, который лежит в основе начала синтеза белка, довольно сложен и до сих пор не изучен. Ученые считают, что в ответ на воздействие внешнего фактора (в данном случае избыток углеводов) сигнал каким-то образом поступает к ядру клетки, который и является инициирующим и основополагающим в запуске синтеза белка. Считается, что синтез белка начинается в ядре клетки. ДНК – основной носитель генетической информации, и, как вы уже знаете, представляет собой двойную спираль, закрученную вокруг общей оси. Ген – это участок ДНК, содержащий программу построения только одного определенного белка, например, выше упомянутого инсулина. Афористическая формула «Один ген – один белок» была открыта всего полвека назад. Чтобы «прочитать» информацию, касающуюся синтеза данного белка, надо расплести и разъединить нити ДНК на участке нужного гена. Этим занимается определенный фермент.2 ГИДРОЛИЗ В БИОХИМИЧЕСКИХ ПРОЦЕССОВ2.1 Гидролиз белковБелковые вещества составляют громадный класс органических, то есть углеродистых, а именно углеродисто азотистых соединений, неизбежно встречаемых в каждом организме. Роль белков в организме огромна. Без белков или их составных частей – аминокислот – не может быть обеспечено воспроизводство основных структурных элементов органов и тканей, а также образование ряда важнейших веществ, как, например, ферментов и гормонов. Белки пищи прежде, чем быть использованы для построения тканей тела, предварительно расщепляются. Организмом используется для питания не сам пищевой белок, а его структурные элементы – аминокислоты и, может быть, частично простейшие пептиды, из которых затем в клетках синтезируются специфические для данного вида организма белковые вещества.Каждый вид организма, каждый орган и каждая ткань содержат свои характерные белки, и при усвоении чужеродных белков пищи организм прежде всего лишает их видовой специфичности. Перед тем, как быть усвоенными белки должны быть разложены на индифферентный материал. Разложение белковых веществ на более простые, лишенные видовой специфичности соединения, способные всасываться в кровь через стенки кишечника, осуществляется в пищеварительных органах человека и животных путем последовательного гидролиза под действием ряда ферментов. В полости рта белки никаким изменениям не подвергаются, так как в состав слюны необходимые для этого протеолитические ферменты не входят. Переваривание белков начинается в желудке.В желудочно-кишечном тракте пищевые белки распадаются на аминокислоты при участи пищеварительных протеолитических ферментов – пептидогидролаз. Эта группа ферментов различающихся по субстратной специфичности: каждый из этих ферментов предпочтительно (т.е. с наибольшей скоростью) гидролизует пептидные связи, образованные определёнными аминокислотами. В результате совместного действия всех пищеварительных пептидогидролаз белки пищи полностью распадаются на аминокислоты. Таким путём организм получает мономеры для синтеза собственных белков.В желудке переваривание (т. е. гидролитическое расщепление) происходит при действии протеолитического фермента пепсина; существенную роль в этом процессе играет соляная кислота, за счёт которой желудочный сок имеет низкое значение pH (1-2). Под действием этой кислоты выделяемый главными клетками желудочных желез белок пепсиноген превращается в пепсин. HCl катализирует этот процесс, в ходе которого отщепляется часть молекулы и образуется активный центр фермента. Сам пепсин катализирует процесс своего образования, т. е. является автокатализатором.Пепсин гидролизирует пептидные связи, удалённые от концов пептидной цепи (поэтому пепсин относят к эндопептидазам). При этом белки распадаются на полипептиды, свободные аминокислоты практически не образуются.Переваривание белков завершается в верхнем отделе тонкого кишечника под действием ферментов поджелудочной железы и клеток кишечника. Эти клетки продуцируют ряд проферментов (трипсиноген, химотрипсиноген, прокарбопептидазы А и В, проэластаза). После каталитического образования в проферментах активного центра и отщепления части молекул, эти белки превращаются соответственно в ферменты: Трипсин, Химотрипсин, Карбопептидазы А и В и Эластазу.Трипсин, Химотрипсин и эластаза – эндопептидазы – гидролизуют связи, лежащие ближе к середине полипептидной цепи. Продуктами их действия являются, в основном, пептиды, но образуется и ряд аминокислот.Карбопептидазы – экзопептидазы. Они гидролизуют пептидную связь, образованную концевым аминокислотным остатком. Карбопептидаза А отщепляет преимущественно концевые аминокислоты с гидрофобным радикалом, а карбоксипептидаза В – остатки лизина и аргинина.Последний этап переваривания происходит при участии ферментов, синтезируемых клетками кишечника – аминопептидаз и дипептидаз. Первые отщепляют концевые аминокислоты от пептидов, вторые гидролизуют дипептиды.Таким образом, переваривание пищевых белков – суть, последовательность реакций гидролиза, катализирующегося рядом ферментов.Гидролиз – также основа синтеза мочевины.Данный процесс катализируется ферментом аргиназой, причём возможен и обратный процесс – синтез аргинина из орнитина (Цикл Кребса-Гензелейта).2.2 Гидролиз углеводовУглеводы пищи в пищеварительном тракте распадаются на мономеры при действии гликозидаз – ферментов, катализирующих гидролиз гликозидных связей в полисахаридах.Переваривание начинается уже в ротовой полости: в слюне содержится фермент амилаза (α~1,4 – гликозидаза), расщепляющая α~1,4 гликозидные связи. Поскольку пища в ротовой полости пребывает недолго, то крахмал здесь переваривается лишь частично. Основным же местом перваривания крахмала служит тонкий кишечник, куда поступает амилаза в составе сока поджелудочной железы. Амилаза не гидролизует гликозидную связь в дисахаридах, поэтому основным продуктом действия кишечой амилазы является дисахарид мальтоза.Из тех глюкозных остатков, которые в молекуле крахмала соединены 1,6-гликозидной связью, образуется дисахарид изомальтоза. Кроме того, с пищей в организм поступают дисахариды сахароза и лактоза, которые гидролизуются специфическими гликозидазами – мальтазой, изомальтазой, лактазой и сахаразой соответственно.Продукты полного гидролиза углеводов – глюкоза, галактоза и фруктоза – через клетки кишечника поступают в кровь.Гидролиз жиров в 12-перстную кишку поступает желчь и сок поджелудочной железы, необходимые для переваривания жиров. В соке поджелудочной железы содержится фермент липаза, катализирующий гидролиз сложноэфирной связи в триацилглицеринах. Поскольку жиры нерастворимы в водных средах, а липаза нерастворима в жирах, гидролиз происходит лишь на поверхности раздела этих фаз и, следовательно, скорость переваривания зависит от площади этой поверхности [3].В составе желчи содержатся коньюгированные желчные кислоты – гликохолевая и таурохолевая. Эти кислоты обладают амфифильными свойствами. На поверхности раздела жир-вода они ориентируются таким образом, что гидрофобная циклическая часть оказывается погружённой в жир, а гидрофильная боковая цепь – в водную фазу. В результате образуется стабильная эмульсия.Под действием липазы идёт гидролиз жиров, в ходе которого жирные кислоты отщепляются от триацилглицерина одна за другой, сначала от α-углеродных атомов, потом – от β-углеродного атома.Образующиеся в процессе переваривания пищи вещества-мономеры, вступают в ряд реакций. Во многих из них они окисляются, и энергия, выделяющаяся при этом окислении, используется для синтеза АТФ из АДФ – основного процесса аккумулирования энергии в живых организмах. Эта энергия необходима для роста и нормального функционирования организма. Человек получает её как за счёт многостадийного процесса окисления пищи – белков, жиров и углеводов, так и за счёт гидролиза некоторых сложных эфиров, амидов, пептидов и гликозидоа. Однако главным источником энергии для многих биологических процессов – биосинтеза белка, ионного траспорта, сокращения мышц, электрической активности нервных клеток – является аденозинтрифосфат (АТФ).АТФ (Аденозинтрифосфорная кислота) принадлежит к бионеорганическим соединениям, так как состоит из органической части – аденозина и неорганической части – трёх связанных в цепь фосфатных групп [4]. 2.3 Гидролитические процессыГидролитические процессы играют важную роль в обмене веществ. Гидролизу в организме подвергаются биологически активные вещества: биополимеры (белки, жиры, нуклеиновые кислоты, полисахариды). Вещества, образующиеся при этом, используются организмом для биосинтеза специфичных для этого биополимеров. Часть этих веществ окисляется в цикле Кребса, являясь источником энергии, необходимым для биохимических процессов. Гидролизу в организме подвергаются также макроэргические соединения – АТФ, ГТФ. При разрыве ангидридных связей между фосфатными группами освобождается энергия, которая расходуется на все процессы, идущие в организме: от синтеза белков до сокращения мышц и электрической активности нервных клеток. Процессы гидролиза биологически активных веществ играют важную роль в пищеварении, в окислительно-восстановительных процессах, в действии буферных систем организма. Действие многих химико-терапевтических средств связано с их кислотнощелочными свойствами с той или иной подверженностью их гидролизу. С этими свойствами связано решение о возможности их одновременного назначения пациенту. Поскольку в регуляции кислотно-основного состояния принимают участие почки и легкие, различают метаболический и респираторный ацидоз и алкалоз.Метаболический ацидоз – нарушение метаболизма, которое приводит к падению рН крови. Наступает вследствие: а) избыточного введения или образования стойких кислот (поступление кетонокислот при голодании и диабете, повышенное образование молочной кислоты при шоке, повышенное образование серной кислоты в процессе усиленного распада биомолекул и др.); б) неполное удаление кислот при почечной недостаточности; в) избыточная потеря НСО3 – при поносе, колите, язве кишечника. Метаболический алкалоз – нарушение метаболизма, приводящее к повышению рН крови. Наступает вследствие: а) потеря Н+ (рвота, кишечная непроходимость); б) увеличение концентрации НСО3 – (потеря воды, избыточное введение НСО3– – при метаболическом ацидозе, введение солей молочной, уксусной, лимонной и др. органических кислот, которые присоединяют Н+). Дыхательный ацидоз – некомпенсированное или частично компенсированное снижение рН крови вследствие гиповентиляции: а) заболевания легких и дыхательных путей (пневмония, отек легких, инородные тела в верхних дыхательных путях); б) повреждения дыхательной мускулатуры; в) угнетение дыхательного центра лекарствами или наркотиками (опиаты, барбитураты и др.). Дыхательный алкалоз – некомпенсированное или частично компенсированное увеличение рН крови вследствие гипервентиляции из-за лихорадочного состояния или истерии. Для коррекции кислотно-основного равновесия при ацидозах внутривенно вводят 4% раствор гидрокарбоната натрия, при алкалозах – 5% раствор аскорбиновой кислоты [5].
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Медицинская химия: учеб. / В.А. Калибабчук, Л.И. Грищенко, В.И. Галинская и др.; под ред. проф. В.А. Калибабчук. – К.: Медицина, 2008. – 400 с. 2. Медицинская химия: Учебное пособие / И.В. Завгородний, А.О. Сыровая, Н.М. Ткачук и др. / Под ред. И.В. Завгороднего и А.О. Сыровой. – Харьков, Экограф, 2011. – 244 с.3) Робертис Э. де, Новинский В., Саэс Ф. Биология клетки / Под ред. С.Я. Залкинда; Пер. с англ. А.В. Михеевой, В.И. Самойлова, И.В. Цоглиной, Ю.А. Шаронова. – М.: Мир, 1973. – 488 с.4) Юсупов Г.А. Энергоинформационная медицина. Гомеопатия. Электропунктура по Р.Фоллю. – М.: Издательский дом “Московские новости”, 2000 – 331 с., ил.5) Биофизика: Учеб. для студ. высш. учеб. заведений. – М.: Гуманит. изд. центр ВЛАДОС, 1999. – 288 с.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
комментарий к ст. 20 Конституции РФ
Доклад, Человек и его права в контексте современной реальности
Срок сдачи к 23 янв.
решить лабораторную работу
Лабораторная, Структуры и алгоритмы обработки данных
Срок сдачи к 24 янв.
Планово-предупредительная система технического обслуживания и ремонта...
Курсовая, Комплектования машин и тракторов
Срок сдачи к 28 янв.
Насколько быстро вы сможете выслать ответ на билет такого типа
Ответы на билеты, Начертательная геометрия
Срок сдачи к 22 янв.
решить лабораторную работу
Лабораторная, Структуры и алгоритмы обработки данных
Срок сдачи к 24 янв.
решить лабораторную работу
Лабораторная, Структуры и алгоритмы обработки данных
Срок сдачи к 24 янв.
Развернутые ответы на вопросы по методичке
Ответы на билеты, Человек и его права в контексте современной реальности
Срок сдачи к 23 янв.
решить лабораторную работу
Лабораторная, Структуры и алгоритмы обработки данных
Срок сдачи к 24 янв.
решить лабораторную работу
Лабораторная, Структуры и алгоритмы обработки данных
Срок сдачи к 24 янв.
решить лабораторную работу
Лабораторная, Структуры и алгоритмы обработки данных
Срок сдачи к 24 янв.
решить лабораторную работу
Лабораторная, Структуры и алгоритмы обработки данных
Срок сдачи к 24 янв.
Заполните форму и узнайте цену на индивидуальную работу!