Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Физические свойства жидкости в пристеночных слоях

Тип Реферат
Предмет Физика

ID (номер) заказа
39483

200 руб.

Просмотров
927
Размер файла
27.46 Кб
Поделиться

Ознакомительный фрагмент работы:

Реферат: Физические свойства жидкости в пристеночных слоях
ВведениеНа поверхности раздела твердое тело – жидкость всегда создается пристенный (приграничный) слой жидкости, свойства которого отличаются от свойств объемной жидкой фазы вследствие действия поверхностных сил твердой подложки.
Это впервые было отмечено, согласно [1], в 1801 г. Лесли. Такие пристеночные слои различны по своим параметрам. Это могут быть адсорбционные монослои, либо системы из нескольких молекулярных слоев, но могут создаваться более сложные, но и более интересные протяженные пристенные слои, примером которых являются граничные фазы (или эпитропные жидкие кристаллы).
1. История исследования.Представление об особой пристенной граничной фазы был введен Б.В.Дерягиным при анализе результатов экспериментов, проведенных совместно с В.В.Карасевым [3] по определению вязкости пристенных слоев жидкости. В этих экспериментах было установлено, что у некоторых полярных жидкостей вблизи от поверхности твердой подложки (диэлектрической или металлической) коэффициент вязкости отличается от его значения для объемной жидкости и остается постоянным до некоторой критической толщины ds, после чего скачком изменяется до значения, соответствующего объемной (изотропной) жидкости. Постоянство свойств в пределах всего пристенного слоя и существование резкой (по типу фазовой) границы раздела, отделяющей пристенный слой от объемной жидкости позволило выделять такой слой в отдельную граничную фазу. Далее в работах З.М.Зорина [4] были исследованы адсорбционные слои ряда полярных жидкостей, образованных на твердой подложки, и было показано, что такие слои ограниченно смачиваются собственной объемной жидкостью. Это однозначно указывало на отличие их свойств от свойств объемной жидкости.
Позднее [3] при исследованиях теплоемкости пристенных слоев полярной жидкости (нитробензола) было показано, что теплоемкость пристенных слоев нитробензола ниже теплоемкости объемной жидкости и установлено существование теплоты фазового перехода граничная фаза – объемная жидкость. Была определена зависимость равновесной толщины граничной фазы от температуры. Проведенные выше указанные исследования пристенных слоев позволили предположить, что структура граничных фаз отлична от структуры объемной жидкости, являясь более упорядоченной, и подобна жидкокристаллической.
2. Физическая теория приграничного слоя жидкостейПервыми предположение о жидкокристаллическом строении граничных фаз выдвинули Б.В.Дерягин и Л.М.Щербаков, однако, тип структуры указан ими не был. Интересно отметить, что к выводу об ориентационной упорядоченности в пристенных полимолекулярных слоях ранее пришли также исследователи граничного трения [1], предположившие связь между гомеотропной упорядоченностью в пристенных слоях алифатических кислот, образованных на металлической поверхности, и возрастанием противоизносных свойств граничных смазочных слоев.
Оптическую анизотропию пристенных слоев воды, толщиной ds ~ 20 нм, образованных на слоистой матрице диэлектрика (пирофиллита) наблюдали Б.В.Дерягин и Грин-Келли [3]. Однако степень упорядоченности молекул в пристенных слоях и направление преимущественной ориентации молекул воды этих опытах установлено не было. В работе этих ученых для выяснения вопроса о величине и типе оптической анизотропиии, существующей в граничных слоях нитробензола на поверхности стекла и кварца, был использован метод плоского световода переменной толщины [3]. Этим методом было установлено, что для молекул нитробензола ряда характерна гомеотропная ориентация молекул в пристенных слоях и была проведена оценка равновесной толщины пристенных слоев. В последующих исследованиях этим методом была замечена корреляция между способом предварительной подготовки поверхности подложки (ее очистка хромовой кислотой, обработкой водородным пламенем) и величиной оптической анизотропии жидкой прослойки в световоде.
Прямым (и более информативным) способом изучения свойств упорядоченных пристенных слоев, измерения их структурных параметров явился метод исследования дихроизма собственных электронных полос поглощения [2].
Дипольные моменты электронных переходов в молекулах имеют определенные направления (поляризованы) и поэтому в спектрах поглощения ориентационно– упорядоченного ансамбля молекул наблюдается дихроизм поглощения. Для каждой полосы поглощения знак дихроизма определяется взаимным расположением моментов электронного перехода и электрического вектора световой волны, а величина дихроизма зависит от степени ориентационной упорядоченности молекул поглощающей среды. Мерой ориентационной упорядоченности ансамбля молекул является параметр порядка
(1)
где θ – угол между осью отдельной молекулы и направлением преимущественной ориентацией, а усреднение ведется по всему ансамблю молекул. На максимуме поглощения полосы коэффициент поглощения света – μ определяется выражением:
(2)
где pi - дипольный момент перехода, Ei - электрический вектор световой волны.
В частном случае гомеотропной ориентации молекул ансамбля коэффициент поглощения инвариантен к состоянию поляризации падающего света и определяется формулой:
(3)
где - коэффициент поглощения аналогичной изотропной среды, m – молекулярный параметр, определяющийся значением угла γ между дипольным моментом перехода и длиной осью молекулы:
m = 0,5 (3*cos2 γ -1).
В случае планарной ориентации молекул ансамбля коэффициент поглощения также инвариантен состоянию поляризации падающего света и определяется формулой:
(4)
Таким образом, определив величину экстинкции ориентационно – упорядоченного пристенного слоя, можно определить минимум ориентации молекул в пристенном слое и рассчитать параметр порядка в нем.
Следует отметить, что высокая экстинкция в максимумах электронно-колебательных полос поглощения (например, для жидкости ароматического ряда) позволяет надежно фиксировать поглощение света в пристенных слоях с толщинами до d =40 нм.
Для измерения локальных значений коэффициента поглощения в пределах пристенного слоя был разработан метод сканирования по толщине клиновидной прослойки исследуемой жидкости, образованной между двумя прозрачными подложками, узким световым зондом на частоте, соответствующей максимуму электронно-колебательной полосы поглощения.
В случае однородности оптических свойств прослойки зависимость логарифма интенсивности прошедшего света от толщины прослойки будет линейной:
(5)
В случае же структурной (и как следствие) оптической неоднородности подложки зависимость ln y = f(d) будет нелинейной, и ее анализ позволяет установить минимум ориентации молекул в прослойке, оценить ее структурной однородности и установить характер границы раздела: пристенный слой – объемная жидкость.
Рассмотренная методика пригодна лишь для жидкостей имеющих интенсивные электронно–колебательные полосы поглощения с длиной волны λ > 200 нм. Однако, у многих жидкостей (например, алифатического ряда) такие полосы лежат в области вакуумного ультрафиолета и этот метод непосредственно не применим.
В этих случаях возможно использовать, вариант метода дихроизма с внедрением в матрицу основной жидкости примесных молекул, изоморфных основным, но обладающих значительной экстинкцией в заданной области спектра и привести измерения их экстинкции.
Другой методикой исследования дихроизма поглощения ориентационно–упорядоченных пристенных слоев является метод нарушенного полного внутреннего отражения [3]. Как известно, в этом случае луч, попадающий из оптически более плотной среды в оптически менее плотную, отражается, но и частично в ней поглощается. Соответствующая геометрия оптических элементов позволяет использовать многократное повторение полного внутреннего отражения, что увеличивает чувствительность метода. Таким способом были подтверждены результаты измерений методом измерения дихроизма собственных полос поглощения степени упорядоченности, существующей в пристенных слоях нитробензола, и гомеотропного типа ориентации молекул в них. Однако этим методом затруднительно определить степень однородности пристенных слоев и установить существование границы раздела: граничная фаза – объемная жидкость.
Исследование дихроизма в клиновидных прослойках ароматических жидкостей образованных между лиофилизированными поверхностями кварца показали, что зависимость ln y = f(d) имеет вид выпуклой ломаной. Вблизи от поверхности подложки в интервале толщин 20 нм < d < 60 нм коэффициент поглощения постоянен и меньше, чем в объемной (изотропной) фазе. Это позволяет утверждать, что пристенные слои ароматических жидкостей, толщиной d=60 нм однородно ориентационно упорядоченны, причем длинные оси молекул нормальны к поверхности кварцевой подложки. Такие слои отделены резкой (фазовой) границей раздела от изотропной (объемной) жидкости, что подтверждает выделить их выделение в особое фазовое состояние граничную фазу.
Аналогичные ориентационно упорядоченные пристенные слои жидкости ароматического ряда образуются также и на поверхности сапфира (Al2O3).
Исследование строения пристенных слоев алифатических жидкостей проводились этим методом путем измерения дихроизма примесных молекул. Было показано, что в этом случае ориентационно – упорядоченные пристенные слои обладают несколько большей толщиной, чем у ароматиков (dS = 200нм), а ориентация молекул зависит от рода мономолекулярных слоев ориентантов, нанесенных на поверхность кварца, и эта ориентация может быть как гомеотропной, так и планарной.
Установленная структурная упорядоченность молекул в пристенных слоях органических жидкостей, образованных на лиофильных диэлектрических твердых подложках, однородность структуры в пределах пристенного слоя толщиной d и существование фазовой границы раздела, отделяющей пристенные слои от объемной жидкой фазы, являются прямыми. Доказательствами того, что такие пристенные слои представляют собой отдельную, граничную фазу, с которой и связаны установленные ранее “аномалии” термодинамических и оптических свойств пристенных слоев жидкости.
Такие граничные фазы исследовавшихся немезогенных органических жидкостей ароматического и алифатического рядов ввиду существования в них дальнего ориентационного порядка молекул следует отнести к особому типу жидких кристаллов, причем по типу симметрии - к нематикам. Однако, в отличие от обычных жидких кристаллов ориентационная упорядоченность в граничных фазах может возникать в поле поверхностных сил лиофильной твердой подложке. Поэтому такие граничные, подобные жидкокристлическим фазы немезогенных жидкостей были названы эпитропными (от греч.”эпи”-поверхность) жидкими кристаллами (ЭЖК).
Отличительной особенностью ЭЖК является их пространственная ограниченность и возможность равновесного сосуществования с объемной жидкой фазой в значительном интервале температур. Убывание равновесной толщины ЭЖК фазы с ростом температуры (с одновременным уменьшением степени ориентационного порядка в ней) свидетельствует о постепенном послойном ориентационном плавлении ЭЖК фазы.
Эта фаза образуется у поверхности лиофильных твердых подложек в поле дальнодействующих поверхностных сил твердой подложки. Так как молекулы жидкостей, образующих ЭЖК фазы анизометричны, то следовательно существенную роль в организации ЭЖК играет анизотропные межмолекулярные взаимодействия (как и при образовании объемной жидкокристаллической фазы). Представления теории Майера-Заупе о механизме образования нематической фазы были положены в основу создания термодинамической модели организации вблизи подложки ЭЖК фазы.
Согласно этой теории ориентационная упорядоченность в объемной жидкокристаллической фазе возникает вследствие действия анизотропной диполь-дипольной составляющей дисперсионной молекулярных сил. Рассчитанная в рамках такого представления зависимость ориентационной составляющей свободной энергии ΔF0 от параметра порядка S при различной температуре. При температурах Т<TC - температуры фазового перехода жидкокристаллическая фаза-объемная жидкость на зависимости ΔF0(S) существует минимум с ΔF<0, соответствующий устойчивому жидкокристаллическому состоянию. При температуре несколько большей Тс наблюдается два минимума, первый абсолютный минимум (ΔFop=0 при S=0), соответствующий изотропной жидкости и второй минимум (ΔFop>0 при S≠0), соответствующий неустойчивому в объеме, метастабильному (“перегретому”) жидкокристаллическому состоянию.
Жидкости, образующие в пристенных слоях ЭЖК фазу относятся к немезогенным, т.е. при плавлении они сразу переходят в объемную жидкость, т.к. даже при температуре плавления ориентирующих сил межмолекулярных анизотропных взаимодействий недостаточно для организации стабильной в объеме ориентационно упорядоченной мезофазы. Устойчивое мезофазное состояние таких жидкостей может реализоваться (по крайней мере теоретически) лишь в переохлажденном состоянии, а при температурах выше температуры плавления жидкокристаллическое состояние в них метастабильно. Однако, вблизи твердой подложки в прилегающих к ней слоях таких жидкостей дальнодействующие поверхностные силы могут стабилизировать метастабильное жидкокристаллическое состояние в области толщин слоя d≤ds. Такие простые соображения поясняют, во-первых структурную однородность ЭЖК фазы, представляющей собой стабилизированное полем поверхностных сил жидкокристаллическое состояние, обладающее одинаковым ориентационным упорядочением и однородностью всех физических свойств, определяющихся степенью ориентационной упорядоченности. Во-вторых такое представление объясняет существование фазовой границы раздела, отделяющей ЭЖК фазу от объемной изотропной жидкости.
Далее для построения самой упрощенной микроскопической модели ЭЖК фазы была предпринята попытка использования одномерной модели Изинга, в которой система представляет собой решетку, в каждом узле которой элемент может находится в двух дискретных состояниях. В одномерной модели Изинга в отсутствии внешнего ориентирующего поля спонтанная ориентация отдельных элементов отсутствует. Во внешнем ориентирующем поле средний параметр порядка в ней S>0. Для расчетов отдельные совокупности элементов - “цепочки”, равноудаленные от ориентирующей твердой подложки, замыкались (периодическое граничное условие) и для каждой цепочки задавалось некоторое значение энергии поля поверхностных сил, кубически убывающей по мере удаления от поверхности.
Такая схема позволила рассчитать зависимость параметра порядка в системе элементов – молекул от расстояния до поверхности подложки и от температуры. Далее была рассчитана теплоемкость такой системы в функции от толщины слоя (числа цепочек) и температуры, и теплота перехода ЭЖК фазы в объемную жидкость.
Эта модель качественно описала основные свойства ЭЖК фазы: - существование упорядоченности (S=const) вблизи от поверхности подложки, уменьшение числа упорядоченных цепочек (толщины ЭЖК слоя) с ростом температуры, зависимость теплоты перехода ЭЖК фазы - объемная жидкость от температуры.
Необходимо отметить также, что ЭЖК фаза, существующая в неоднородном поле поверхностных сил не является полностью однородной по степени ориентационного порядка. Так в специально поставленных опытах по измерению дихроизма примесных молекул в сверхтонких (~ 10 – 15 нм) слоях нитробензола было показано, что около десяти молекулярных слоев, непосредственно прилегающих к поверхности подложки, обладают упорядоченностью повышенной по сравнению с объемом ЭЖК фазы.
Далее, при спектральных исследованиях ЭЖК фазы были отмечены изменения формы спектральных полос при уменьшении толщины слоя ЭЖК фазы.
В серии нормированных спектров ЭЖК фазы ароматических жидкостей (нитробензола и анизола) были отмечены изобестические точки, что однозначно свидетельствует о существовании в ЭЖК фазах этих жидкостeй нескольких типов поглощающих центров. Для определения числа таких центров с помощью метода Грама-Шмидта серия экспериментальных спектров была преобразована в серию ортогональных спектров и было показано, что экспериментальные спектры представляют собой наложение двух независимых спектров, один из которых преобладает в тонких слоях ЭЖК, а другой - в более толстых. Поглощающие центры, ответственные за эти спектры можно сопоставить с мономерами и димерами данных жидкостей. Дальнейшие расчеты позволили получить зависимость от расстояния до подложки концентрации димеров и мономеров. Дополнительные эксперименты по исследованию зависимости диэлектрической проницаемости прослоек нитробензола от их толщины также показали, что вблизи от поверхности подложки концентрируются димеры с антипараллельной ориентацией жестких дипольных моментов.
Другая, термодинамическая модель ЭЖК фазы в своем настоящем состоянии недостаточно разработана, не оснащена математическим аппаратом и поэтому не позволяет проводить количественных расчетов. В этой и других моделях не рассматривается роль поверхностного близкодействия, определяющегося числом и характером ”активных центров”, находящихся непосредственно на поверхности твердой подложки.
Далее в этих моделях совершенно не учитывается роль второй, смежной фазы, ограничивающей ЭЖК слой с внешней стороной.
Отдельно следует отметить, что при переходе от диэлектрических подложек к металлическим равновесная толщина ЭЖК фаз значительно возрастает, что, по-видимому, связано с возрастанием в этом случае запаздывающих Ван-дер-Вальсовых сил. Укажем также, что в этих моделях игнорируется пространственная неоднородность ЭЖК-фаз, отмеченная в спектральных исследованиях.
Заключение
Следует отметить, что предложенные теоретические модели ЭЖК фазы недостаточно адекватно описывают механизм возникновения приграничного эффекта и физические свойства жидкостей в приграничных слоях. Глубокое рассмотрение всех свойств в пристенных слоях жидкостей займет значительно больший объем.
Список литературы
Б.А.Алтоиз, В.Т.Дейнега. Влияние граничного слоя жидкости на эффективность теплообмена в системах с каналами малого сечения. Научно-технический сборник «Тепловые режимы и охлаждение радиоэлектронной аппаратуры». Одесса: Вып.1.- 2001
Алтоиз Б.А., Поповский Ю.М. Физика приповерхностных слоев. - Одесса: Астропринт, 1995
Ландау Л.Д., Лившиц Е.М. Гидродинамика.-М.: Наука, 1996.
Р.Фейман., Р.Лейтон., М. Сэндс. Фейнмановские лекции по физики. // Физика сплошных сред. – М.: Высшая школа, 2007


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 769 оценок star star star star star
среднее 4.9 из 5
ТУСУР
Работа выполнена досрочно. Все необходимые замечания были исправлены моментально. Хорошая ...
star star star star star
КГСХА
Роберт большое вам спасибо! Все сделали очень быстро!!! Всем советую. Быстро, качественно,...
star star star star star
ЮУрГУ
Получила отлично за выполненную Ириной работу у очень придирчивого препода
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить задания из файла

Решение задач, Экономическая теория

Срок сдачи к 19 дек.

только что

Доработать Контрольную работу

Контрольная, Основы инженерной геологии и гидрогеологии

Срок сдачи к 11 янв.

только что

Игра на уроках истории, курсовая работа.

Курсовая, Игра на уроках истории

Срок сдачи к 12 янв.

только что

Чертеж контактного аппарата производства серной кислоты

Диплом, Оборудование

Срок сдачи к 23 дек.

1 минуту назад

«Технология выполнения женской стрижки и окрашивания волос с...

Диплом, Технологическая парикмахерского искусства

Срок сдачи к 26 дек.

1 минуту назад

решить 5 задач по математике

Решение задач, Математика

Срок сдачи к 15 дек.

1 минуту назад

Домашние задания 7 штук за 8 класс, в интернет школе.

Другое, Геометрия

Срок сдачи к 28 дек.

1 минуту назад

выполнить задания из файла

Другое, Экономическая теория

Срок сдачи к 19 дек.

1 минуту назад

Выполнить лабораторные работы в системе Miro

Лабораторная, Проектирование безопасных систем, программирование

Срок сдачи к 17 дек.

1 минуту назад

Задание СРМ ( общая схема составления расписания)

Другое, Математическое моделирование

Срок сдачи к 15 дек.

3 минуты назад

Расчётно-графическое задание проектирование ЛВС

Контрольная, Телекоммуникационные системы. ИНФОРМАТИКА

Срок сдачи к 10 янв.

3 минуты назад

Сделать дневник по практике

Отчет по практике, Стоматология хирургическая, медицина

Срок сдачи к 30 дек.

4 минуты назад

Сделать презентацию и написать доклад к ней

Презентация, Спортивная дефектология

Срок сдачи к 17 дек.

4 минуты назад

Необходимо выполнить расчет , вариант 61.

Решение задач, Основы расчета строительных конструкций, строительство

Срок сдачи к 15 дек.

4 минуты назад

Выполнить и оформить работу в соответствии с требованиями.

Контрольная, Схемотехника

Срок сдачи к 22 дек.

4 минуты назад

Особенности функционирования и регулирование

Курсовая, Финансы и кредит

Срок сдачи к 18 дек.

4 минуты назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно
    Введите ваш e-mail
    Файл с работой придёт вам на почту после оплаты заказа
    Успешно!
    Работа доступна для скачивания 🤗.