это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
ID (номер) заказа
891219
Ознакомительный фрагмент работы:
ОТВЕТЫ:
Что называется пределом функции?
Пусть функция у=ƒ (х) определена в некоторой окрестности точки хо, кроме, быть может, самой точки хо. Сформулируем два, эквивалентных между собой, определения предела функции в точке.
Определение 1 (на «языке последовательностей», или по Гейне).
Число А называется пределом функции у=ƒ(х) в топке x0 (или при х® хо), если для любой последовательности допустимых значений аргумента xn, n є N (xn¹x0), сходящейся к хо, последовательность соответствующих значений функции ƒ(хn), n є N, сходится к числу А
В этом случае пишут или ƒ(х)—>А при х→хо. Геометрический смысл предела функции: означает, что для всех точек х, достаточно близких к точке хо, соответствующие значения функции как угодно мало отличаются от числа А.
Определение 2 (на «языке ε», или по Коши).
Число А называется пределом функции в точке хо (или при х→хо), если для любого положительного ε найдется такое положительное число δ, что для все х¹хо, удовлетворяющих неравенству |х-хо|<δ, выполняется неравенство |ƒ(х)-А|<ε.
Каким образом определяется число е?
e — основание натурального логарифма, математическая константа, иррациональное и трансцендентное число. Приблизительно равно 2,71828. Иногда число. называют числом Эйлера или числом Непера.
Второй замечательный (особый) предел позволяет раскрывать неопределенности вида единица в степени бесконечность . Замечательный предел имеет следующий вид
Что называется приращением аргумента?
Пусть функция f(x) определена на некотором интервале I, а х0 и х два произвольных значения аргумента из этого интервала. Разность между двумя значениями аргумента называется приращением аргумента и обозначают Δх:
х - х0 =Δх, откуда х = х0 + Δх, т.е. значение аргумента х можно определить через х0 и его же приращение
Что называется приращением функции?
Разность между двумя значениями функции называется приращением функции и обозначаютΔу: Δу=Δ f=f(xo+ Δx)-f(xo)
Приращение аргументаΔ х изображается приращением абсциссы точки графика функции у = f(x), а приращение функции Δf - приращением ординаты этой точки.
Дайте определение производной функции
Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует.
Перечислите правила нахождения производной функции.
А) Пусть даны функции f(x) и g(x), производные которых нам известны. Тогда можно найти производную суммы и разности этих функций:
(f + g )’ = f ’ + g ’
(f – g
)’ = f ’ − g ’
Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.
Б) Производная произведения:
(f · g) ’ = f ’ · g + f · g ’
В) Производная частного: Если есть две функции f(x) и g(x), причем g(x) ≠ 0 , то
Г) Производная сложной функции: f ’(x) = f ’(t) · t ’
Д) константы можно выносить за знак производной: (C · f)’ ...
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить 2 контрольные работы по Информационные технологии и сети в нефтегазовой отрасли. М-07765
Контрольная, Информационные технологии
Срок сдачи к 12 дек.
Архитектура и организация конфигурации памяти вычислительной системы
Лабораторная, Архитектура средств вычислительной техники
Срок сдачи к 12 дек.
Организации профилактики травматизма в спортивных секциях в общеобразовательной школе
Курсовая, профилактики травматизма, медицина
Срок сдачи к 5 дек.
краткая характеристика сбербанка анализ тарифов РКО
Отчет по практике, дистанционное банковское обслуживание
Срок сдачи к 5 дек.
Исследование методов получения случайных чисел с заданным законом распределения
Лабораторная, Моделирование, математика
Срок сдачи к 10 дек.
Проектирование заготовок, получаемых литьем в песчано-глинистые формы
Лабораторная, основы технологии машиностроения
Срок сдачи к 14 дек.
Вам необходимо выбрать модель медиастратегии
Другое, Медиапланирование, реклама, маркетинг
Срок сдачи к 7 дек.
Ответить на задания
Решение задач, Цифровизация процессов управления, информатика, программирование
Срок сдачи к 20 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Информационные технологии
Срок сдачи к 11 дек.
Написать реферат по Информационные технологии и сети в нефтегазовой отрасли. М-07764
Реферат, Геология
Срок сдачи к 11 дек.
Разработка веб-информационной системы для автоматизации складских операций компании Hoff
Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления
Срок сдачи к 1 мар.
Нужно решить задание по информатике и математическому анализу (скрин...
Решение задач, Информатика
Срок сдачи к 5 дек.
Заполните форму и узнайте цену на индивидуальную работу!