Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Объекты биотехнологии (биологические системы, используемые в биотехнологии)

Тип Реферат
Предмет биотехнология

ID (номер) заказа
2255417

200 руб.

Просмотров
922
Размер файла
5.69 Мб
Поделиться

Ознакомительный фрагмент работы:

СОДЕРЖАНИЕ
ВВЕДЕНИЕ..........................................................................................................................3
1 ОСНОВНАЯ ЧАСТЬ.......................................................................................................4
1.1 Общие сведения о биологических объектах и их характеристика...........................4
1.1.1 Аукариоты (вирусы и вироиды)............................................................................5
1.1.2 Прокариоты (бактерии)..........................................................................................8
1.1.3 Эукариоты.............................................................................................................11
1.1.3.1 Грибы..........................................................................................................12
1.1.3.2 Водоросли...................................................................................................15
1.1.3.3 Простейшие................................................................................................18
1.1.3.4 Высшие растения.......................................................................................20
1.1.3.5 Животные...................................................................................................22
1.1.4 Ферменты..............................................................................................................23
1.1.5 Биологически активные химические вещества.................................................25
1.1.6 Культуры эукариотических клеток.....................................................................27
1.2 Требования, предъявляемые к биологическим объектам........................................32
1.3 Преимущества и недостатки различных штаммов-продуцентов............................33
1.4 Использование биологических объектов..................................................................34
ЗАКЛЮЧЕНИЕ.................................................................................................................40
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ..................................................................................................................42
ВВЕДЕНИЕ
Тема: Объекты биотехнологии (биологические системы, используемые в биотехнологии)
Актуальность: Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности, обеспечивая при этом сохранение баланса в системе взаимоотношений «человек - природа - общество», ибо биологические технологии (биотехнологии), базирующиеся на использовании потенциала живого по определению нацелены на дружественность и гармонию человека с окружающим его миром.
Медицинская биотехнология - наиболее значимая область современной биотехнологии. Это производство биотехнологическими методами диагностикумов и лекарственных препаратов с использованием технологий клеточной и генетической инженерии (зеленые вакцины, генные диагностикумы, моноклональные антитела, конструкции и продукты тканевой инженерии и др.).
Современная биотехнология - это одно из приоритетных направлений национальной экономики всех развитых стран. Путь повышения конкурентности биотехнологических продуктов на рынках сбыта является одним из основных в общей стратегии развития биотехнологии промышленно развитых стран [2].
Исходя из актуальности, целью нашей работы является изучение объектов биотехнологии и применения биологических систем в биотехнологии.
Для достижения поставленной цели были выдвинуты следующие задачи:
Изучить общую характеристику о биологических объектах;
Выявить требования, которые предъявляются биологическим объектам;
Определять положительные и отрицательные стороны штаммов-продуцентов;
Изучить использование биологических объектов.
1 ОСНОВНАЯ ЧАСТЬ
1.1 Общие сведения о биологических объектах и их характеристика
Объектами молекулярной биотехнологии являются самые разнообразные биологические системы: микроорганизмы, клеточные линии насекомых, растений и млекопитающих, вирусы насекомых, растений и млекопитающих, многоклеточные организмы (растения, мыши, домашние животные и т. д.) – выбор системы зависит от целей эксперимента. Характер биологической системы исключительно важен для биотехнологического процесса. Во многих случаях именно генетически модифицированная самовоспроизводящая биологическая единица – микроорганизм, вирус, растение или животное – является конечным коммерческим продуктом. Среди множества биологических объектов, использующихся в молекулярной биотехнологии, основными являются бактерии Escherichia coli, одноклеточные дрожжи Saccharomyces cerevisiae и различные клеточные линии животного происхождения. Все они играют важную роль в получении белков, кодируемых клонированными генами [2].
Объектами биотехнологии являются вирусы, бактерии, грибы – микромицеты и макромицеты, протозоиные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционально сходные с ними вещества (например, ферменты, простагландины, лектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, саморегулируемого и, следовательно, целенаправленного биохимического производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.
Как видно из приводимой схемы, объекты биотехнологии исключительно разнообразны, диапазон их распространяется от организованных частиц (вирусов) до человека. Рисунок 1.
 Рисунок 1 – Объекты биотехнологии
 1.1.1 Аукариоты (вирусы и вироиды)
Вирусы (от лат. virus, яд) — наименьшие по размерам агенты, имеющие геном, окружённый белковой оболочкой. Вирусы не воспроизводятся самостоятельно, они — облигатные внутриклеточные паразиты, репродуцирующиеся только в живых клетках. Все вирусы существуют в двух формах. В настоящее время известны вирусы бактерий (бактериофаги), грибов, растений и животных. Внеклеточная форма — вирион — включает в себя все составные элементы (капсид, нуклеиновую кислоту, структурные белки, ферменты и др.). Внутриклеточная форма — вирус — может быть представлена лишь одной молекулой нуклеиновой кислоты, так как, попадая в клетку, вирион распадается на составные элементы.
Вириоды (от вирусы и греч. eidos — форма, вид), инфекционные агенты, представляющие собой низкомолекулярную одноцепочечную кольцевую РНК (молекулярная масса 150000-170000), не кодирующую собственные белки. Вызывают болезни растений. Механизм репликации вироидов окончательно не выяснен. Предполагается, что вироиды в клетках растений, индуцируют синтез вироидных РНК, используя ферменты растений-хозяев. Возможно, что некоторые болезни человека и животных (куру, скрейпи овец и др.) вызываются агентами, сходными с вироидами.
Несмотря на внутриклеточный паразитизм, среди вирусов имеются крупные виды, соизмеримые по размерам с микоплазмами и хламидиями. Например, вирус натуральной оспы достигает 400 нм и вполне сравним с риккетсиями (300-500 нм) и хламидиями (300-400 нм). По морфологии выделяют вирусы палочковидные (например, возбудитель лихорадки Эбола), пулевидные (вирус бешенства), сферические (герпесвирусы), овальные (вирус оспы), а также бактериофаги, имеющие сложную форму. При всём разнообразии конфигураций, размеров и функциональных характеристик вирусам присущи некоторые общие признаки. В общем виде зрелая вирусная частица (вирион) состоит из нуклеиновой кислоты, белков и липидов, либо в его состав входят только нуклеиновые кислоты и белки.
Вирусы содержат только один тип нуклеиновой кислоты, ДИК или РНК, но не оба типа одновременно. Например, вирусы оспы, простого герпеса, Эпштейна-Барр — ДНК-содержащие, а тогавирусы, пикорнавирусы — РНК-содержащие. Геном вирусной частицы гаплоидный. Наиболее простой вирусный геном кодирует 3-4 белка, наиболее сложный — более 50 полипептидов. Нуклеиновые кислоты представлены однонитевыми молекулами РНК (исключая реовирусы, у которых геном образован двумя нитями РНК) или двухнитевыми молекулами ДНК (исключая парвовирусы, у которых геном образован одной нитью ДНК). У вируса гепатита В нити двухнитевой молекулы ДНК неодинаковы по длине. Вирусные ДНК образуют циркулярные, ковалентно-сцёпленные суперспирализованные (например, у паповавирусов) или линейные двухнитевые структуры (например, у герпес- и аденовирусов). Их молекулярная масса в 10-100 раз меньше массы бактериальных ДНК [8].
Транскрипция вирусной ДНК (синтез мРНК) осуществляется в ядре заражённой вирусом клетки. В вирусной ДНК на концах молекулы имеются прямые или инвертированные (развёрнутые на 180") повторяющиеся нуклеотидные последовательности. Их наличие обеспечивает способность молекулы ДНК замыкаться в кольцо. Эти последовательности, присутствующие в одно- и двух-нитевых молекулах ДНК, — своеобразные маркёры вирусной ДНК.
Рисунок 2 - Размеры и морфология основных возбудителей вирусных инфекций человека
Вирусные РНК представлены одно- или двухнитевыми молекулами. Однонитевые молекулы могут быть сегментированными — от 2 сегментов у ареновирусов до 11 — у ротавирусов. Наличие сегментов ведёт к увеличению кодирующей ёмкости генома.
Вирусные РНК подразделяют на следующие группы: плюс-нити РНК (+РНК), минус-нити РНК (-РНК). У различных вирусов геном могут образовывать нити +РНК либо -РНК, а также двойные нити, одна из которых -РНК, другая (комплементарная ей) — +РНК.
Плюс-нити РНК представлены одиночными цепочками, имеющими характерные окончания («шапочки») для распознавания рибосом. К этой группе относят РНК, способные непосредственно транслировать генетическую информацию на рибосомах заражённой вирусом клетки, то есть выполнять функции мРНК. Плюс-нити выполняют следующие функции: служат мРНК для синтеза структурных белков, матрицей для репликации РНК, упаковываются в капсид с образованием дочерней популяции.
Минус-нити РНК не способны транслировать генетическую информацию непосредственно на рибосомах, то есть они не могут функционировать как мРНК. Однако такие РНК служат матрицей для синтеза мРНК.
Несмотря на то, что представители всех надцарств содержат генетический материал, различные акариоты лишены какого-либо одного типа нуклеиновой кислоты РНК или ДНК. Они не способны функционировать (в том числе – реплицироваться) вне живой клетки, и, следовательно, правомочно именовать их безъядерными [1].
1.1.2 Прокариоты (бактерии)
Бактерии – существа клеточной организации, у которых ядерный материал не отделен от цитоплазмы элементарными мембранами и не связан с какими-либо основными белками. Цитоплазма в них с нерегулярно разбросанными рибосомами неподвижна, клетки не обладают способностями к эндо- и экзоцитозу. В большинстве своем бактерии одноклеточны, наименьший диаметр их 0,2-10,0 мкм.
Все бактерии составляют единое царство Bacteria, хотя одни из них – археобактерии (Archaeobacteria) заметно отличаются от других, названных эубактериями (Eubacteria). Очевидно, археобактерии являются более древними представителями прокариот, чем эубактерии. Они обитают в средах с экстремальными условиями – высокие концентрации неорганических солей, повышенные температуры, оксид и диоксид углерода – как единственные источники углерода. К археобактериям относятся галобактерии, термоацидофильные бактерии и метанобразующие, или метаногенные бактерии.
Фототрофными бактериями являются оксигенные цианобактерии, аноксигенные пурпурные и зеленые бактерии; хемотрофными – грамположительные и грамотрицательные бактерии и бациллы, миксобактерии, стебельковые и почкующиеся бактерии, вибрионы, спириллы, спирохеты, актиномицеты, коринебактерии, микобактерии, риккетсии, хламидии, микоплазмы и спироплазмы.
Бактерия Escherichia coli – один из наиболее хорошо изученных организмов. За последние годы удалось получить исчерпывающую информацию о ее генетике, молекулярной биологии, биохимии, физиологии и общей биологии. Это грамотрицательная непатогенная подвижная палочка длиной менее 1 мкм. Ее средой обитания является кишечник человека, но она также может высеваться из почвы и воды. Благодаря способности размножаться простым делением на средах, содержащих только ионы Na+, K+, Mg2+, Ca2+, NH4+, Cl-, микроэлементы и источник углерода (например, глюкозу), Е. coli стала излюбленным объектом научных исследований. При культивировании E.coli на обогащенных жидких питательных средах, содержащих аминокислоты, витамины, соли, микроэлементы и источник углерода, время генерации (т. е. время между образованием бактерии и ее делением) в логарифмической фазе роста при температуре 37°С составляет примерно 22 мин [7].
Рисунок 3 – Строение бактерии Escherichia coliДля каждого живого организма существует определенный температурный интервал, оптимальный для его роста и размножения. При слишком высоких температурах происходит денатурация белков и разрушение других важных клеточных компонентов, что ведет к гибели клетки. При низких температурах биологические процессы существенно замедляются или останавливаются совсем вследствие структурных изменений, которые претерпевают белковые молекулы. Исходя из температурного режима, который предпочитают те или иные микроорганизмы, их можно подразделить на термофилы (от 45 до 90°С и выше), мезофилы (от 10 до 47°С) и психрофилы, или психротрофы (от -5 до 35°С). Микроорганизмы, активно размножающиеся лишь в определенном диапазоне температур, могут быть полезным инструментом для решения различных биотехнологических задач. Например, термофилы часто служат источником генов, кодирующих термостабилъные ферменты, которые применяются в промышленных или в лабораторных процессах, а генетически видоизмененные психротрофы используют для биодеградации токсичных отходов, содержащихся в почве и воде, при пониженных температурах [5].
E. coli можно культивировать как в аэробных (в присутствии кислорода), так и в анаэробных (без кислорода) условиях. Однако для оптимальной продукции рекомбинантных белков Е. coli и другие микроорганизмы обычно выращивают в аэробных условиях. Если целью культивирования бактерий в лаборатории является синтез и выделение определенного белка, то культуры выращивают на сложных жидких питательных средах в колбах. Для поддержания нужной температуры и обеспечения достаточной аэрации культуральной среды колбы помещают в водяную баню или термостатируемую комнату и непрерывно встряхивают. Такой аэрации достаточно для размножения клеток, но не всегда — для синтеза белка. Рост клеточной массы и продукция белка лимитируются не содержанием в питательной среде источников углерода или азота, а содержанием растворенного кислорода: при 20°С оно равно примерно девяти миллионным долям. Это становится особенно важно при промышленном получении рекомбинантных белков с помощью микроорганизмов. Для обеспечения условий, оптимальных для максимальной продукции белков, конструируют специальные ферментеры и создают системы аэрации.
Помимо Е. coli, в молекулярной биотехнологии используют множество других микроорганизмов. Их можно разделить на две группы: микроорганизмы как источники специфических генов и микроорганизмы, созданные генно-инженерными методами для решения определенных задач. К специфическим генам относится, например, ген, кодирующий термостабильную ДНК-полимеразу, которая используется в широко применяемой полимеразой цепной реакции (ПЦР). Этот ген был выделен из термофильных бактерий и клонирован в Е. coli. Ко второй группе микроорганизмов относятся, например, различные штаммы Corynebacterium glutamicum, которые были генетически модифицированы с целью повышения продукции промышленно важных аминокислот [5].
1.1.3 Эукариоты (грибы, водоросли, простейшие, высшие растения, животные)
Для эукариотической клетки характерно наличие ядра, отделенное ядерной мембраной, хромосомной ДНК, клеточной стенки, цитоплазмы, с наличием органелл (аппарат Гольджи, митохондрии, хлоропласты).
1.1.3.1 Грибы
Биотехнологические функции грибов разнообразны. Их используют для получения таких продуктов, как:
антибиотики (пенициллы, стрептомицеты, цефалоспорины);
гиббереллины и цитокинины (физариум и ботритис);
каротиноиды (например, астаксантин, придающий мякоти лососевых рыб красно-оранжевый оттенок вырабатывают Rhaffia rhodozima, которых добавляют в корм на рыбозаводах);
белок (Candida, Saccharomyces lipolitica);
сыры типа рокфор и камамбер (пенициллы);
соевый соус (Aspergillus oryzae).
К грибам относятся актиномицеты, дрожжи и плесени. Истинные актиномицеты – строгие аэробы, они грамположительны и не образуют спор. Наиболее представительный в этой группе – род Streptomyces, отдельные виды которого продуцируют широко применяемые антибиотики. При росте на твердых средах актиномицеты образуют очень тонкий мицелий с воздушными гифами, которые дифференцируются в цепочки конидиоспор. Каждая конидиоспора способна образовать микроколонию.
Антибиотики продуцирует и другой вид актиномицетов, Micromonospora, колонии которого лишены воздушных гиф и образуют конидиоспоры непосредственно на мицелии.
Из 500 известных видов дрожжей первым люди научились использовать Saccharomyces cerevisiae, этот вид наиболее интенсивно культивируется. Дрожжи Saccharomyces cerevisiae – это непатогенные одноклеточные микроорганизмы с диаметром клетки примерно 5 мкм, которые во многих отношениях представляют собой эукариотический аналог Е. coli. Их генетика, молекулярная биология и метаболизм детально изучены. S. cerevisiae размножаются почкованием и хорошо растут на такой же простой среде, как и Е. coli. Их способность к превращению сахара в этанол и углекислый газ издавна использовалась для изготовления алкогольных напитков и хлеба. Дрожжи S. cerevisiae представляют также большой научный интерес. В частности, они являются наиболее удобной моделью для исследования других эукариот, в том числе человека, поскольку многие гены, ответственные за регуляцию клеточного деления S. cerevisiae, сходны с таковыми у человека. Это открытие способствовало идентификации и характеристике генов человека, отвечающих за развитие новообразований. Широко используемая генетическая система дрожжей (искусственная хромосома) является непременным участником всех исследований по изучению ДНК человека. В 1996 г. была определена полная нуклеотидная последовательность всего набора хромосом S. cerevisiae, что еще более повысило ценность этого микроорганизма для научных исследований [1].
Синтезированный бактериальной клеткой эукариотический белок часто приходится подвергать ферментативной модификации, присоединяя к белковой молекуле низкомолекулярные соединения – во многих случаях это необходимо для правильного функционирования белка. К сожалению, Е. coli и другие прокариоты не способны осуществлять эти модификации, поэтому для получения полноценных эукариотических белков используют S. cerevisiae, а также другие виды дрожжей: Kluyveromyces lactis, Saccharomyces diastaticus, Schizisaccharomyces pombe, Yarrowia lipolytica, Pichia pastoris, Hansenula polymorpha. Наиболее эффективными продуцентами полноценных рекомбинантных белков являются P. pastoris и Н. polymorpha.
К дрожжам, сбраживающим лактозу, относится Kluyveromyces fragilis, который используют для получения спирта из сыворотки. Saccharomycopsis lipolytica деградирует углеводороды и употребляется для получения белковой массы. Все три вида принадлежат к классу аскомицетов. Другие полезные виды относятся к классу дейтеромицетов (несовершенных грибов), так как они размножаются не половым путем, а почкованием. Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности). Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков. Phaffia rhodozyma синтезирует астаксантин – каротиноид, который придает мякоти форели и лосося, выращиваемых на фермах, характерный оранжевый или розоватый цвет. Промышленные дрожжи обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность адаптироваться к изменениям среды культивирования (в норме ядро клетки S.cerevisiae содержит 17 или 34 хромосомы, т.е. клетки либо гаплоидны, либо диплоидны).
Плесени вызывают многочисленные превращения в твердых средах, которые происходят перед брожением. Их наличием объясняется гидролиз рисового крахмала при производстве сакэ и гидролиз соевых бобов, риса и солода при получении пищи, употребляемой в азиатских странах. Пищевые продукты на основе сброженных плесневыми грибами Rhizopus oligosporus соевых бобов или пшеницы содержат в 5-7 раз больше таких витаминов, как рибофлавин, никотиновая кислота) и отличаются повышенным в несколько раз содержанием белка. Плесени также продуцируют ферменты, используемые в промышленности (амилазы, пектиназы и т.д.), органические кислоты и антибиотики. Их применяют и в производстве сыров, например, камамбера и рокфора.
Искусственное выращивание грибов способно внести и иной, не менее важный вклад в дело обеспечения продовольствием возрастающего населения земного шара. Люди употребляют грибы в пищу с глубокой древности. Поэтому сделать грибы такой же управляемой сельскохозяйственной культурой, как зерновые злаки, овощи, фрукты, давно уже стало актуальной задачей. Наиболее легко поддаются искусственному выращиванию древоразрушающие грибы. Это связано с особенностями их биологии, которые стали нам известны и понятны только сейчас. Их способность легко расти и плодоносить использовали с древнейших времен [9].
Искусственное разведение древоразрушающих грибов получило довольно широкое распространение. Мицелий съедобных грибов можно выращивают на жидких средах, например на молочной сыворотке и др., в специальных ферментерах, в так называемой глубинной культуре.
1.1.3.2 Водоросли
Водоросли используются, в основном, для получения белка. Весьма перспективны в этом отношении и культуры одноклеточных водорослей, в частности высокопродуктивных штаммов рода Chlorella и Scenedesmus. Их биомасса после соответствующей обработки используется в качестве добавки в рационы скота, а также в пищевых целях.
Одноклеточные водоросли выращивают в условиях мягкого теплого климата (Средняя Азия, Крым) в открытых бассейнах со специальной питательной средой. К примеру, за теплый период года (6-8 месяцев) можно получить 50-60 т биомассы хлореллы с 1 га, тогда как одна из самых высокопродуктивных трав – люцерна дает с той же площади только 15-20 т урожая.
Хлорелла содержит около 50% белка, а люцерна – лишь 18 %. В целом в пересчете на 1 га хлорелла образует 20-30 т чистого белка, а люцерна – 2-3,5 т. Кроме того, хлорелла содержит 40% углеводов, 7-10% жиров, витамины А (в 20 раз больше), B2, К, РР и многие микроэлементы. Варьируя состав питательной среды, можно процессы биосинтеза в клетках хлореллы сдвинуть в сторону накопления либо белков, либо углеводов, а также активировать образование тех или иных витаминов.
Рисунок 4 – Строение хлореллы
В пищу употребляют не менее 100 видов макрофитных водорослей как в странах Европы и Америки, так и особенно на Востоке. Из них готовят много разнообразных блюд, в том числе диетических, салатов, приправ. Их подают в виде засахаренных кусочков, своеобразных конфет, из них варят варенье, делают желе, добавки к тесту и многое другое. В магазине можно купить консервы из морской капусты – ламинарии дальневосточных или северных морей. Ее консервируют с мясом, рыбой, овощами, рисом, употребляют при приготовлении супов и др. Она наряду с микроводорослью хлореллой является самой популярной съедобной и кормовой водорослью.
Известны и другие съедобные макрофитные водоросли – ульва, из которой делают разные зеленые салаты, а также алария, порфира, родимения, хондрус, ундария и др. В Японии продукты, получаемые из ламинариевых, называют «комбу», и для того, чтобы их вкусно приготовить, существует более десятка способов [2].
В целом ряде стран водоросли используют как весьма полезную витаминную добавку к кормам для сельскохозяйственных животных. Их прибавляют к сену или дают как самостоятельный корм для коров, лошадей, овец, коз, домашней птицы во Франции, Шотландии, Швеции, Норвегии, Исландии, Японии, Америке, Дании и на нашем Севере. Животным скармливают в виде добавки также биомассу выращиваемых микроводорослей (хлорелла, сценедесмус, дуналиелла и др.).
Гидролизаты белка зеленой водоросли Scenedesmus используются в медицине и косметической промышленности. В Израиле на опытных установках проводятся эксперименты с зеленой одноклеточной водорослью Dunaliella bardawil, которая синтезирует глицерол. Эта водоросль относится к классу равножгутиковых и похожа на хламидомонаду. Dunadiella может расти и размножаться в среде с широким диапазоном содержания соли: и в воде океанов, и в почти насыщенных солевых растворах Мертвого моря. Она накапливает свободный глицерол, чтобы противодействовать неблагоприятному влиянию высоких концентраций солей в среде, где она растет. При оптимальных условиях и высоком содержании соли на долю глицерола приходится до 85% сухой массы клеток. Для роста этим водорослям необходимы: морская вода, углекислый газ и солнечный свет. После переработки эти водоросли можно использовать в качестве корма для животных, так как у них нет неперевариваемой клеточной оболочки, присущей другим водорослям. Они также содержат значительное количество β-каротина. Таким образом, культивируя эту водоросль, можно получать глицерол, пигмент и белок, что весьма перспективно с экономической точки зрения.
Наряду с кормами водоросли давно применяют в сельском хозяйстве в качестве удобрений. Биомасса обогащает почву фосфором, калием, йодом и значительным количеством микроэлементов, пополняет также ее бактериальную, в том числе азотфиксирующую, микрофлору. При этом в почве водоросли разлагаются быстрее, чем навозные удобрения, и не засоряют ее семенами сорняков, личинками вредных насекомых, спорами фитопатогенных грибов.
Одним из самых ценных продуктов, получаемых из красных водорослей, является агар – полисахарид, присутствующий в их оболочках и состоящий из агарозы и агаропектина. Количество его доходит до 30-40 % от веса водорослей (водоросли лауренция и грацилярия, гелидиум). Водоросли – единственный источник получения агара, агароидов, каррагинина, альгинатов.
Бурые водоросли являются единственным источником получения одних из самых ценных веществ водорослей – солей альгиновой кислоты, альгинатов. Альгиновая кислота – линейный гетерополисахарид, построенный из связанных остатков 3-Д-маннуроновой и α-L-гиалуроновой кислот [5].
Альгинаты применяются в народном хозяйстве. Это изготовление высококачественных смазок для трущихся деталей машин, медицинские и парфюмерные мази и кремы, синтетические волокна и пластики, стойкие к любой погоде лакокрасочные покрытия, не выцветающие со временем ткани, производство шелка, клеящих веществ исключительно сильного действия, строительных материалов, пищевые продукты отличного качества – фруктовые соки, консервы, мороженое, стабилизаторы растворов, брикетирование топлива, литейное производство и многое другое. Альгинат натрия способен поглощать до 300 весовых единиц воды, образуя при этом вязкие растворы.
Бурые водоросли богаты также весьма полезным соединением – шестиатомным спиртом маннитом, который применяют в пищевой промышленности, фармацевтике, при производстве бумаги, красок, взрывчатки и др. Бурые водоросли в ближайшее время планируется использовать для получения биогаза. Каллусные культуры макрофитных водорослей могут быть использованы далее в различных направлениях. В случае, если они получены от агарофитов, можно непосредственно получать из них агар. Каллусные культуры пищевых макрофитных водорослей, например ламинариевых, могут в перспективе использоваться для получения белка, непосредственно идущего в пищу и в пищевые добавки, а также в корма сельскохозяйственным животным [7].
1.1.3.3 Простейшие
Простейшие относятся к числу нетрадиционных объектов биотехнологии. До недавнего времени они использовались лишь как компонент активного ила при биологической очистке сточных вод. В настоящее время они привлекли внимание исследователей как продуценты биологически активных веществ.
В этом качестве рациональнее использовать свободноживущих простейших, обладающих разнообразными биосинтетическими возможностями и потому широко распространенными в природе.
Особую экологическую нишу занимают простейшие, обитающие в рубце жвачных животных. Они обладают ферментом целлюлазой, способствующей разложению клетчатки в желудке жвачных. Простейшие рубца могут быть источником этого ценного фермента. Возбудитель южноамериканского трипаносомоза – Trypanosoma (Schizotrypanum cruzi) стала первым продуцентом противоопухолевого препарата круцина (СССР) и его аналога – трипанозы (Франция). Изучая механизм действия этих препаратов, ученые пришли к выводу, что эти препараты оказывают цитотоксический эффект при прямом контакте с опухолью и ингибируют ее опосредованно, путем стимуляции ретикулоэндотелиальной системы. Выяснилось, что ингибирующее действие связано с жирнокислотными фракциями. Характерной особенностью этих организмов является высокое содержание ненасыщенных жирных кислот, составляющее у трипаносомид 70-80 %, а у Astasia longa (свободноживущий жгутиконосец) – 60% от суммы всех жирных кислот. У жгутиконосцев фосфолипиды и полиненасыщенные жирные кислоты имеют такой же состав и строение, как в организме человека и животных. В мире микробов полиненасыщенные жирные кислоты не синтезируются, а многоклеточные животные или растения представляют собой более ограниченную сырьевую базу, чем простейшие, культуры которых можно получать методами биотехнологии независимо от времени года или климатических условий.
Поскольку липидный метаболизм простейших обладает относительной лабильностью, были изучены пути его регуляции. Применение к простейшим общепринятого в микробиологии приема повышения биосинтеза липидов за счет снижения содержания в среде источника азота и увеличения содержания источника углерода привело к резкому торможению или остановке роста культур. Для создания условий направленного биосинтеза липидов в среды для культивирования жгутиконосцев добавляли предшественники и стимуляторы биосинтеза липидов: малонат, цитрат, сукцинат, цитидиннуклеотиды в сочетании с определенным режимом аэрации.
Другой группой биологически активных веществ простейших являются полисахариды. Разнообразие полисахаридов, синтезируемых простейшими, достаточно велико. Особый интерес представляет парамилон, характерный для эвгленоидных жгутиконосцев. Представители родов Astasia и Euglena способны к сверхсинтезу парамилона, составляющему свыше 50 % сухого остатка клеток. Этот полисахарид изучается как стимулятор иммунной системы млекопитающих. Парамилон, выделенный из А. longa, практически нетоксичен. Выраженное иммуномодулирующее действие и низкая токсичность этого препарата являются предпосылкой для его углубленного исследования в сочетании с препаратами прямого противоопухолевого действия, радиотерапией и другими адъювантами.
В настоящее время в мире придается большое значение производству глюканов не только для медицинских целей, но и для пищевой и текстильной промышленности. До сих пор глюканы получали из культур бактерий или морских водорослей. Эвглениды являются одним из наиболее перспективных источников этого вещества. Структурные полисахариды, входящие в состав клеточных мембран простейших, – это гетерополисахариды, содержащие глюкозу, маннозу, ксилозу, арабинозу, рибозу, галактозу, рамнозу, фруктозу, глюкозамин. Наиболее характерными гетерополисахаридами являются арабиногалактаны, Д-галакто-Д-маннан, фосфаноглюканы и другие.
Биомасса простейших содержит до 50% белка. Его высокая биологическая ценность заключается в том, что он содержит все незаменимые аминокислоты, причем содержание свободных аминокислот на порядок выше, чем в биомассе микроводорослей, бактерий и в мясе. Это свидетельствует о широких возможностях применения свободноживущих простейших в качестве источника кормового белка.
1.1.3.4 Высшие растений
Высшие растения (порядка 300 000 видов) – это дифференцированные многоклеточные, преимущественно наземные организмы. В процессе дифференциации и специализации клетки растений группировались в ткани (простые – из однотипных клеток, и сложные – из разных типов клеток). Ткани, в зависимости от функции, подразделяют на образовательные, или меристемные (от греч. meristos – делимый), покровные, проводящие, механические, основные, секреторные (выделительные). Из всех тканей лишь меристематические способны к делению и за их счет образуются все другие ткани. Это важно для получения клеток, которые затем должны быть включены в биотехнологический процесс.
Клетки меристемы, задерживающиеся на эмбриональной стадии развития в течение всей жизни растения, называются инициальными, другие постепенно дифференцируются и превращаются в клетки различных постоянных тканей – конечные клетки. Любой вид растения может дать в соответствующих условиях неорганизованную массу делящихся клеток – каллус(от лат. callus – мозоль), особенно при индуцирующем влиянии растительных гормонов. Массовое производство каллусов с дальнейшей регенерацией побегов пригодно для крупномасштабного производства растений. Вообще каллус представляет собой основной тип культивируемой на питательной среде растительной клетки. Каллусная ткань из любого растения может длительно рекультивироваться. При этом первоначальные растения (в том числе и меристематические), дедифференцируются и деспециализируются, но индуцируются к делению, формируя первичный каллус.
Кроме выращивания каллусов удается культивировать клетки некоторых растений в суспензионных культурах.
Важными биообъектами представляются также и протопласты растительных клеток. Методы их получения принципиально сходны с методами получения бактериальных и грибных протопластов [1].
Кроме культуры растительных клеток, применяется водный папоротник азолла. Он ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Это позволяет симбиотическому организму анабена-азолла накапливать много азота в вегетативной массе. Анабену-азоллу выращивают на рисовых полях перед посевом риса, что позволяет снижать количество вносимых минеральных удобрений.
Представители семейства рясковых (Lemnaceae) – самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Рясковые - свободноживущие водные плавающие растения. Вегетативное тело напоминает лист или слоевище низших растений, поэтому до начала 18 века ряску относили к слоевищным растениям.
Рясковые (Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры. Их используют и в свежем, и в сухом виде как ценный белковый корм для свиней и домашней птицы. Рясковые содержат много протеина (до 45 % от сухой массы). 45% углеводов, 5% жиров и остальное - клетчатка и т.д. Они высоко продуктивны, неприхотливы в культуре, хорошо очищают воду и обогащают её кислородом. Это делает рясковые ценным объектом для морфогенетических, физиологических и биохимических исследований [4].
1.1.3.5 Животные
В качестве объектов биотехнологии могут использоваться сами животные и культуры клеток животных.
При всех различиях между типами эукариот методические подходы к культивированию клеток насекомых, растений и млекопитающих имеют много общего. Сначала берут небольшой кусочек ткани данного организма и обрабатывают его протеолитическими ферментами, расщепляющими белки межклеточного материала (при работе с растительными клетками добавляют специальные ферменты, разрушающие клеточную стенку). Высвободившиеся клетки помещают в сложную питательную среду, содержащую аминокислоты, антибиотики, витамины, соли, глюкозу и факторы роста. В этих условиях клетки д?


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно
    Введите ваш e-mail
    Файл с работой придёт вам на почту после оплаты заказа
    Успешно!
    Работа доступна для скачивания 🤗.